Show simple item record

dc.contributor.authorRomero Perdomo, Felipe Andrésspa
dc.contributor.authorBarón Guaquetá, Ever Mauriciospa
dc.contributor.authorBonilla Buitrago, Ruth Rebecaspa
dc.description.sponsorshipCorporación colombiana de investigación agropecuaria - AGROSAVIAspa
dc.publisherCorporación colombiana de investigación agropecuaria - AGROSAVIAspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.titleExperiencia agrosavia en Algodón (Gossypium hirsutum)spa
dc.subject.faoProducción y tratamiento de semillas - F03spa
dc.subject.faoPreparación del suelo - F07spa
dc.subject.faoArreglo y sistemas de cultivo - F08spa
dc.subject.agrovocSistemas de producciónspa
dc.coverage.researchcenterC.I Tibaitatáspa
dc.type.localengbook parteng
dc.description.productionsystemsAlgodón-Gossypium herbaceumspa
dc.publisher.placeMosquera (Colombia)spa
dc.relation.referencesAmjad, M., Akhtar, J., & Rashid, M. S. (2015). Evaluating the effectiveness of biofertilizer on salt tolerance of cotton (Gossypium hirsutum L.). Archives of Agronomy and Soil Science, 61(8), 1.165- 1.177.
dc.relation.referencesBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
dc.relation.referencesCampuzano-Duque, L. F., & Buenaventura-Baron, M. (2020). Desempeño productivo de algodón en surco ultra-estrechos en suelos ácidos en Colombia. Revista Mexicana de Ciencias Agrícolas, 11(1), 203-211.
dc.relation.referencesCamelo-Rusinque, M., Moreno-Galván, A., Romero-Perdomo, F., & Bonilla-Buitrago, R. (2017). Desarrollo de un sistema de fermentación líquida y de enquistamiento para una bacteria fijadora de nitrógeno con potencial como biofertilizante. Revista Argentina de Microbiología, 49(3), 289-296. https://doi. org/10.1016/j.ram.2016.06.005spa
dc.relation.referencesCappuccino, J. G., & Sherman, N. (2005). Microbiology: A laboratory manual. Benjamin
dc.relation.referencesChastain, D. R., Snider, J. L., Choinski, J. S., Collins, G. D., Perry, C. D., Whitaker, J., Grey, T. L., Sorensen, R. B., van Iersel, M., Byrd, S. A., & Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology, 199, 18-28. jplph.2016.05.003spa
dc.relation.referencesDe Bolle, S., Gebremikael, M. T., Maervoet, V., & De Neve, S. (2013). Performance of phosphate-solubilizing bacteria in soil under high phosphorus conditions. Biology and Fertility of Soils, 49(6), 705-714.
dc.relation.referencesEckert, B., Weber, O. B., Kirchhof, G., Halbritter, A., Stoffels, M., & Hartmann, A. (2001). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, 51(1), 17-26.
dc.relation.referencesFiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66(2), 375-400. https://
dc.relation.referencesGallegos-Cedillo, G. (2019, 26 de agosto). El mercado mundial y nacional del algodón. El Economista. https://www.eleconomista. 20190826-0063.htmlspa
dc.relation.referencesGarcía-Fraile, P., Carro, L., Robledo, M., Ramírez-Bahena, M.-H., Flores-Félix, J.-D., Fernández, M. T., Mateos, P. F., Rivas, R., Igual, J. M., Martínez-Molina, E., Peix, Á., & Velázquez, E. (2012). Rhizobium promotes non-legumes growth and quality in several production steps: Towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE, 7(5), artículo e38122. https://doi. org/10.1371/journal.pone.0038122spa
dc.relation.referencesGlickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793-796. content/61/2/793.abstractspa
dc.relation.referencesHafeez, F. Y., Safdar, M. E., Chaudhry, A. U., & Malik, K. A. (2004). Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Australian Journal of Experimental Agriculture, 44(6), 617-622.
dc.relation.referencesHonma, M., & Shimomura, T. (1978). Metabolism of 1-Aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42(10), 1.825-1.831. .1978.10863261spa
dc.relation.referencesKerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, 64(6), 2.079-2.085. https://doi. org/10.1128/AEM.64.6.2079-2085.1998spa
dc.relation.referencesMaheshwari, D. K., Dubey, R. C., Aeron, A., Kumar, B., Kumar, S., Tewari, S., & Arora, N. K. (2012). Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World Journal of Microbiology and Biotechnology, 28(10), 3.015- 3.024.
dc.relation.referencesMoreno, A. E., Rojas, D. F., & Bonilla, R. R. (2011). Aplicación de diseños estadísticos secuenciales en la identificación de fuentes nutricionales para Azotobacter chroococcum AC1. Ciencia & Tecnología Agropecuaria, 12(2), 151-158. rcta.vol12_num2_art:226spa
dc.relation.referencesMunger, P., Bleiholder, H., Hack, H., Hess, M., Stauß, R., van den Boom, T., & Weber, E. (1998). Phenological growth stages of the cotton plant (Gossypium hirsutum L.): Codification and description according to the bbch Scale1. Journal of Agronomy and Crop Science, 180(3), 143-149. j.1439-037X.1998.tb00384.xspa
dc.relation.referencesNautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. fems Microbiology Letters, 170(1), 265-270. https://doi. org/10.1111/j.1574-6968.1999.tb13383.xspa
dc.relation.referencesPanhwar, Q. A., Naher, U. A., Jusop, S., Othman, R., Latif, M. A., & Ismail, M. R. (2014). Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS ONE, 9(10), artículo e97241.
dc.relation.referencesPardo-Diaz, S., Romero-Perdomo, F., Mendoza-Labrador, J., Delgadillo- Duran, D., Castro-Rincon, E., Silva, A. M., Rojas-Tapias, D., Cardoso, E.J.B.N., Estrada-Bonilla, G. A. (2021). Endophytic PGPB Improves Plant Growth and Quality, and Modulates the Bacterial Community of an Intercropping System. Frontiers in Sustainable Food Systems, 5:715270.
dc.relation.referencesPereg, L., & McMillan, M. (2015). Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biology and Biochemistry, 80, 349-358. soilbio.2014.10.020spa
dc.relation.referencesPereira, S. I. A., & Castro, P. M. L. (2014). Phosphatesolubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, 73, 526-535. https://doi. org/10.1016/j.ecoleng.2014.09.060spa
dc.relation.referencesRamírez, C. A., & Kloepper, J. W. (2010). Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biology and Fertility of Soils, 46(8), 835-844. https://doi. org/10.1007/s00374-010-0488-2spa
dc.relation.referencesRojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growthpromoting bacteria (pgpb) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264-272. https://doi. org/10.1016/j.apsoil.2012.01.006spa
dc.relation.referencesRojas-Tapias, D. F., Bonilla, R., & Dussán, J. (2014). Effect of inoculation and co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on growth, fitness, and copper accumulation of maize (Zea mays). Water, Air, & Soil Pollution, 225(12), artículo 2232. https://
dc.relation.referencesRojas-Tapias, D., Ortiz-Vera, M., Rivera, D., Kloepper, J., & Bonilla, R. (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Universitas Scientiarum, 18(2), 129- 139. SC18-2.etmpspa
dc.relation.referencesRomero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas- Tapias, D., & Bonilla, R. (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiología, 49(4), 377-383.
dc.relation.referencesRomero-Perdomo, F., Ocampo-Gallego, J., Camelo- Rusinque, M., & Bonila, R. (2019). Plant growth promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae). Revista de Biología Tropical, 67(4).
dc.relation.referencesRomero-Perdomo, F., Beltrán, I., Mendoza- Labrador, J., Estrada-Bonilla, G., & Bonilla, R. (2021). Phosphorus nutrition and growth of cotton plants inoculated with growthpromoting bacteria under low phosphate availability. Frontier in Sustainable Food System, 4:618425. doi: 10.3389/ fsufs.2020.618425spa
dc.relation.referencesSantos-Torres, M., Romero-Perdomo, F., Mendoza- Labrador, J., Gutiérrez, A. Y., Vargas, C., Castro- Rincon, E., Caro-Quintero, A., Uribe-Velez, D., Estrada-Bonilla, G. A. (2021). Genomic and phenotypic analysis of rock phosphatesolubilizing rhizobacteria. Rhizosphere, 17, 100290. rhisph.2020.100290spa
dc.relation.referencesSchwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi. org/10.1016/0003-2697(87)90612-9spa
dc.relation.referencesSukumar, P., Legué, V., Vayssières, A., Martin, F., Tuskan, G. A., & Kalluri, U. C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant– microorganism interactions. Plant, Cell & Environment, 36(5), 909-919. https://doi. org/10.1111/pce.12036spa
dc.relation.referencesVincent, J. M. (1970). A manual for the practical study of root-nodule bacteria (ibp Handbook no. 15). Blackwell
dc.relation.referencesWang, E. T. (2019). Symbiosis between rhizobia and legumes. En E. T. Wang, C. F. Tian, W. F. Chen, J. P. W. Young, & W. X. Chen (eds.), Ecology and evolution of rhizobia: Principles and applications (pp. 3-19). Springer. https://
dc.relation.referencesWestcott, P. (2010). usda agricultural projections to 2019.
dc.relation.referencesWu, Z., Yue, H., Lu, J., & Li, C. (2012). Characterization of rhizobacterial strain Rs-2 with acc deaminase activity and its performance in promoting cotton growth under salinity stress. World Journal of Microbiology and Biotechnology, 28(6), 2.383-2.393. s11274-012-1047-9spa
dc.identifier.reponamereponame:Biblioteca Digital Agropecuaria de Colombiaspa
dc.identifier.instnameinstname:Corporación colombiana de investigación agropecuaria AGROSAVIAspa
dc.relation.ispartofbook36976; Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sosteniblespa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International