Show simple item record

dc.contributor.authorZapata, Yimmy
dc.contributor.authorCotes, Alba Marina
dc.contributor.authorJijakli, Haissam
dc.contributor.authorWisniewski, Michael
dc.date.accessioned2018-11-28T19:11:25Z
dc.date.available2018-11-28T19:11:25Z
dc.date.issued2018
dc.identifier.isbn978-958-740-253-7 (e-book)
dc.identifier.urihttp://hdl.handle.net/20.500.12324/34060
dc.description.abstractA nivel global, la producción agrícola sufre una tensión creciente entre el problema de las enfermedades causadas por hongos que afectan casi a todos los vegetales cosechados, por una parte, y la presión de las agencias reguladoras y de la sociedad que demandan productos inocuos libres de fungicidas de síntesis, por otra. Este escenario ha reactivado el interés por integrar prácticas limpias de control en el manejo de patógenos poscosecha, destacándose el uso de bacterias y levaduras antagonistas, que eran conocidas de tiempo atrás. Para realizar un manejo biológico de las enfermedades durante la poscosecha, es importante distinguir entre infecciones que se originan en campo y que permanecen latentes hasta la maduración del producto, y las infecciones poscosecha sensu stricto. En el primer grupo, se destacan las infecciones por Colletotrichum spp., que se expresan como antracnosis en mango, banano, aguacate, pimentón, entre otras frutas y hortalizas; por Botrytis spp., que causan el moho gris en diferentes especies vegetales, y por Penicillium spp., que puede causar infección en el árbol, en almacén o en puestos de mercado al detal. En el segundo grupo se encuentran hongos oportunistas como Aspergillus spp., Fusarium spp., Mucor spp., Geotrichum candidum y Rhizopus spp., algunos de ellos con implicaciones para la salud humana por la producción de micotoxinas como fumonisinas y aflatoxinas. Este capítulo inicia con una enumeración de las prácticas dirigidas a controlar infecciones en poscosecha, que van desde el buen manejo de los productos cosechados, pasando por tratamientos físicos erradicantes y químicos preventivos, hasta llegar a la aplicación de fungicidas como última medida. Después se hace una reseña histórica del control biológico de enfermedades de frutas en poscosecha, seguida de una descripción de los diferentes modos en que las bacterias y las levaduras ejercen su actividad biocontroladora. Posteriormente, se examina el progreso en el conocimiento de los procesos de control biológico y las limitaciones prácticas para su pleno uso comercial, para terminar con uno de los casos exitosos en su aplicación. Esta revisión pone de presente la necesidad de un enfoque sistémico, que considere la red de interacciones existentes, y que la búsqueda del manejo ideal del problema debe integrar una visión simple en cada nodo del proceso productivo con intervenciones múltiples a lo largo del mismo.spa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisher‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIAspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleControl biológico de patógenos en poscosechaspa
dc.subject.faoPlagas de las plantas - H10spa
dc.audienceTécnicospa
dc.audienceProfesionalspa
dc.audienceInvestigadorspa
dc.audience.contentCientíficospa
dc.subject.agrovocAgentes de control biológicospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.redTransversalspa
dc.type.localengbook parteng
dc.title.translatedBiological control of postharvest pathogenseng
dc.type.localCapítulospa
dc.coverage.countryColombiaspa
dc.relation.citationstartpage222
dc.relation.citationendpage255
dc.relation.referencesAbdelfattah, A., Li Destri-Nicosia, M. G., Cacciola, S. O., Droby, S., & Schena, L. (2015). Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). Plos One, 10(7), 1-19. doi:10.1371/ journal.pone.0131069.spa
dc.relation.referencesAdikaram, N., Karunanayake, C., & Abayasekara, C. (2010). The role of pre-formed antifungal substances in the resistance of fruits to postharvest pathogens. En D. Prusky & M. L. Gullino (Eds.), Postharvest pathology (pp. 1-11). Dordrecht, Holanda: Springer.spa
dc.relation.referencesAndersen, B., Smedsgaard, J., & Frisvad, J. (2004). Penicillium expansum: Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, 52(8), 2421- 2428. doi:10.102/jf035406k.spa
dc.relation.referencesAndrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10.1146/ annurev.phyto.38.1.145.spa
dc.relation.referencesArras, G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biology and Technology, 8(3), 191-198. doi:10.1016/0925-5214(95)00071-2.spa
dc.relation.referencesArras, G., De Cicco, V., Arru, S., & Lima, G. (1998). Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. Journal of Horticultureal Science and Biotechnology, 73(3), 413-418. doi:10.1080/14620316.1998.11510993.spa
dc.relation.referencesArrebola, E., Jacobs, R., & Korsten, L. (2009). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386- 395. doi:10.1111/j.1365-2672.2009.04438.x.spa
dc.relation.referencesArrebola, E., Sivakumar, D., Bacigalupo, R., & Korsten, L. (2010). Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection, 29(4), 369-377. doi:10.1016/j.cropro.2009.08.001.spa
dc.relation.referencesBarkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: development and control. Amsterdam, Holanda: Elsevier.spa
dc.relation.referencesBastiaanse, H., De Lapeyre de Bellaire, L., Lassois, L., Misson, C., & Jijakli, M. H. (2010). Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biological Control, 53(1), 100-107. doi:10.1016/j. biocontrol.2009.10.012.spa
dc.relation.referencesBatta, Y. A. (2007). Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biology and Technology, 43(1), 143-150. doi:10.1016/j.postharvbio.2006.07.010.spa
dc.relation.referencesBegum, M., Hocking, A. D., & Miskelly, D. (2009). Inactivation of food spoilage fungi by ultra violet (uvc) irradiation. International Journal of Food Microbiology, 129(1), 74-77. doi:10.1016/j.ijfoodmicro.2008.11.020.spa
dc.relation.referencesBencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S. E., & Jijakli M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology Technology, 46(2), 128-135. doi:10.1016/j.postharvbio.2007.05.005.spa
dc.relation.referencesBleve, G., Grieco, F., Cozzi, G., Logrieco, A., & Visconti, A. (2006). Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. International Journal of Food Microbiology, 108(2), 204-209. doi:10.1016/j.ijfoodmicro.2005.12.004.spa
dc.relation.referencesBreinig, F., Tipper, D. J., & Schmitt, M. J. (2002). Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell, 108(3), 395-405. doi:10.1016/S0092- 8674(02)00634-7.spa
dc.relation.referencesBryk, H. (1999). The study on the infection of apple fruits by Botrytis cinerea Pers. after harvest. Acta Agrobotanica, 52(1-2), 19-29.spa
dc.relation.referencesBull, C. T., Wadsworth, M. L., Sorensen, K. N., Takemoto, J. Y., Austin, R. K.,... Smilanick, J. L. (1998). Syringomycin E produced by biological control agents controls green mold on lemons. Biological Control, 12(2), 89-95. doi:10.1006/ bcon.1998.0622.spa
dc.relation.referencesCaiazzo, R., Kim, Y., & Xiao, C. L. (2014). Occurrence and Phenotypes of Pyrimethanil Resistance in Penicillium expansum from Apple in Washington State. Plant Disease, 98(7), 924-928. doi:10.1094/PDIS-07-13-0721RE.spa
dc.relation.referencesCalvente, V., Benuzzi, D., & De Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum, International Biodeterioration and Bioegradation, 43(4), 167-172. doi:10.1016/S0964-8305(99)00046-3.spa
dc.relation.referencesCalvo, J., Calvente, V., De Orellano, M. E., Benuzzi, D., & Sanz de Tosetti M. I. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol, 48(5), 579-593. doi:10.1023/A:1025738811204.spa
dc.relation.referencesCalvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D., & Sanz de Tosetti, M. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251- 257. doi:10.1016/j.ijfoodmicro.2006.07.003.spa
dc.relation.referencesCanamas, T. P., Viñas, I., Usall, J., Torres, R., Anguera, M., & Teixidó, N. (2008). Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2: Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49(1), 96-106. doi:10.1016/j. postharvbio.2007.12.005.spa
dc.relation.referencesCao, S., Zheng, Y., Tang, S., & Wang, K. (2008). Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2 . International Journal of Food Microbiology, 126(1-2), 216- 220. doi:10.1016/j.ijfoodmicro.2008.05.026.spa
dc.relation.referencesCapdeville, G., Souza, M. T., Santos, J. R. P., Miranda, S. P., Caetano A. R, & Torres, F. A. G. (2007). Selection and testing of epiphytic yeasts to control anthracnose in postharvest of papaya fruit. Scientia Horticulturae, 111(2), 179-185. doi:10.1016/j.scienta.2006.10.003.spa
dc.relation.references Carisse, O. (2016). Epidemiology and aerobiology of Botrytis spp. En: S. Fillinger & Y. Elad, Y. (Eds.), Botrytis – the Fungus, the pathogen and its management in agricultural systems (pp. 127-148). Cham, Suiza: Springer International.spa
dc.relation.referencesCastoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22(1), 7-17. doi:10.1016/S0925-5214(00)00186-1.spa
dc.relation.referencesCoates, L. M., & Johnson, G. I. (1997). Postharvest pathology of fruit and vegetables. En J. Brown & H. Ogle, (Eds.), Plant Pathogens and Plant Diseases (pp. 533- 547). Armidale, Australia: Rockvale.spa
dc.relation.referencesConway, W. S., Sams, C. E., & Hickey, K. D. (2002). Pre- and postharvest calcium treatment of apple fruit and its effect on quality. Acta Horticulture, 594, 413-419. doi:10.17660/ ActaHortic.2002.594.53.spa
dc.relation.referencesÇorbacı, C., & Uçar, F. B. (2017). Production and optimization of killer toxin in Debaryomyces hansenii strains. Brazilian Archives of Biology and Technology, 60, e17160339. doi:10.1590/1678-4324-2017160339.spa
dc.relation.referencesChalutz, E., & Wilson, C. (1990). Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Diseases, 74, 134-137. doi:10.1094/PD-74-0134.spa
dc.relation.referencesChanchaichaovivat, A., Ruenwongsa, P., & Panijpan, B. (2007). Screening and identification of yeast strains from fruit and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control, 42, 326-335. doi:10.1016/j. biocontrol.2007.05.016.spa
dc.relation.referencesChoudhary, A. K., & Kumari, P. (2010). Management of mycotoxin contamination in preharvest and post harvest crops: present status and future prospects. Journal of Phytology, 2(7), 37-52.spa
dc.relation.referencesDepartamento Nacional de Planeación (dnp). (2016). Pérdida y desperdicio de alimentos en Colombia, estudio de la dirección de seguimiento y evaluación de políticas públicas. Bogotá, Colombia: dnp.spa
dc.relation.referencesDroby, S., Chalutz, E., Wilson, C. L., & Wisniewski, M. E. (1992). Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica, 20(Supl. 1), S149-S153. doi:10.1007/ bf02980427.spa
dc.relation.referencesDroby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92(4), 393-399. doi:10.1094/PHYTO.2002.92.4.393.spa
dc.relation.referencesDroby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009.spa
dc.relation.referencesDroby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29. doi:10.1016/j.postharvbio.2016.04.006.spa
dc.relation.referencesDu Plooy, W., Regnier, T., & Combrinck, S. (2009). Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biology and Technology, 53(3), 117-122. doi:10.1016/j. postharvbio.2009.04.005.spa
dc.relation.referencesEl-Ghaouth, A., Smilanick, J. L., & Wilson, C. L. (2000). Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biology and Technology, 19(1), 103-110. doi:10.1016/ S0925-5214(00)00076-4.spa
dc.relation.referencesEl-Ghaouth, A., & Wilson, C. (2002). Patente EUA 6419922B1. Candida saitoana compositions for biocontrol of plant postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA.spa
dc.relation.referencesEl-Ghaouth, A., Wilson, C., & Wisniewski, M. (2003). Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology, 93(3), 344-348. doi:10.1094/PHYTO.2003.93.3.344.spa
dc.relation.referencesEl-Ghaouth, A., Wilson, C., & Wisniewski, M. (2004). Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. En S. A. M. H. Naqvi (Ed.), Diseases of fruit and vegetables (pp. 511-535). Dordrecht, Holanda: Springer.spa
dc.relation.referencesEl-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (1998). Ultrastructural and cytochemical aspects of the biological Control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology, 88(4), 282-291. doi:10.1094/ PHYTO.1998.88.4.282.spa
dc.relation.referencesEl-Neshawy, S. M., & Wilson, C. L. (1997). Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biology and Technology, 10(1), 9-14. doi:10.1016/S0925-5214(96)00053-1.spa
dc.relation.referencesEnvironmental Protection Agency (epa). (2016). What are Biopesticides? Recuperado de https://www.epa. gov/ingredients-used-pesticide-products/what-arebiopesticides.spa
dc.relation.referencesFaisal, M., Prema, R., Nagendran, K., Karthikeyan, G., Raguchander, T., & Prabakar, K. (2013). Development and evaluation of water in oil based emulsion formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana. Euroepan Journal of Plant Pathology, 138(1), 167-180. doi:10.1007/ s10658-013-0320-6.spa
dc.relation.referencesFan, Q., & Tian, S. P. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350. doi:10.1016/S0925-5214(00)00182-4.spa
dc.relation.referencesFilonow, A. B. (2001). Butyl acetate and yeasts interact in adhesion and germination of Botrytis cinerea conidia in vitro and in fungal decay of golden delicious apple. Journal of Chemical Ecology, 27(4), 831-844. doi:10.1023/A:1010314305461.spa
dc.relation.referencesFourie, J. F., & Holz, G. (1998). Effects of fruit and pollen exudates on growth of Botrytis cinerea and infection of plum and nectarine fruit. Plant Disease, 82(2), 165-170. doi:10.1094/PDIS.1998.82.2.165.spa
dc.relation.referencesFuentes, O. E, García, P. G, & Cotes, A. M. (2002). Evaluation of potential agents for postharvest biocontrol of Alternaria alternata in tomato. Bulletin OILB/SROP, 25(10), 403-406.spa
dc.relation.referencesGamagae, S. U., Sivakumar, D., Wilson Wijeratnam, R. S., & Wijesundra R. L. C. (2003). Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Protection, 22(5), 775-779. doi:10.1016/S0261-2194(03)00046-2.spa
dc.relation.referencesGarcía, G., & Cotes, A. M. (2001). Searching alternatives for biological control of Rhizopus stolonifer in tomato postharvest. Fitopatología colombiana, 25, 39-47.spa
dc.relation.referencesGarcía G., Jiménez, Y., Neisa, A., & Cotes, A. M. (2001). Selection of native yeasts for biological control of post-harvest rots caused by Botrytis allii in onion and Rhizopus stolonifer in tomato. Bulletin OILB/SROP, 24(3), 181-184.spa
dc.relation.referencesGomes, A., Queiroz, M., & Pereira, O. (2015). Mycofumigation for the biological control of postharvest diseases in fruits and vegetables: A review.Bioengineering. Austin Journal of Biotechnology & Bioengineering, 2(4), 1051.spa
dc.relation.referencesGovender, V., Korsten, L., & Sivakumar, D. (2005). Semicommercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology, 38(1), 57-65. doi:10.1016/j. postharvbio.2005.04.005.spa
dc.relation.referencesGrevesse, C., Jijakli, H., Duterme, O., Colinet, D., & Lepoivre, P. (1998). Preliminary study of exo-b-1, 3-Glucanase encoding genes in relation to the protective activity of Pichia anomala (strain K) against Botrytis cinerea on postharvest apples. Bulletin OILB/SROP = IOBC/ WPRS Bulletin, 21(9), 81-89.spa
dc.relation.referencesGueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., et al. (1988). Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. Journal of Agriculture and Food Chemistry, 36(2), 366-370. doi:10.1021/jf00080a031.spa
dc.relation.referencesGuijarro, B., Melgarejo, P., Torres, R., Lamarca, N., Usall, J., & De Cal, A. (2007). Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control, 42(1), 86-96. doi:10.1016/j. biocontrol.2007.03.014.spa
dc.relation.referencesIppolito, A., El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19(3), 265- 272. doi:10.1016/S0925-5214(00)00104-6.spa
dc.relation.referencesIppolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261-2194(00)00095-8.spa
dc.relation.referencesJanisiewicz, W. J. (1987). Postharvest biological control of blue mold on apple. Phytopathology, 77, 481-485.spa
dc.relation.referencesJanisiewicz, W., & Roitman, J. (1988). Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology, 78(12), 1697-1700.spa
dc.relation.referencesJanisiewicz, W., Yourman, L., Roitman, J., & Mahoney, N. (1991). Postharvest control of blue mould and gray mould of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Disease, 75(5), 490-494. doi:10.1094/PD-75-0490.spa
dc.relation.referencesJanisiewicz, W. J., & Conway, W. S. (2010). Combining biological control with physical and chemical treatments to control fruit decay after harvest. Stewart Postharvest Review 6(1), article 3. doi.10.2212/spr.2010.1.3.spa
dc.relation.referencesJanisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411-441. doi:10.1146/annurev. phyto.40.120401.130158.spa
dc.relation.referencesJanisiewicz, W. J., Bastos Pereira, I., Almeida, M. S., Roberts, D. P., Wisniewski, M., & Kurtenbach, E. (2008). Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biology and Technology, 47(2), 218- 225. doi:10.1016/j.postharvbio.2007.06.010.spa
dc.relation.referencesJarvis, W. R. (1991). Latent infections in the pre- and postharvest environment. HortScience, 26(6), 801.spa
dc.relation.referencesJijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358.spa
dc.relation.referencesJijakli, M.H., Lepoivre, P., & Grevesse, C. (1999). Yeast species for biocontrol of apple postharvest diseases: An encouraging case of study for practical use. En K. G. Mukerji, B. P. Chamola, & R. K. Upadhyay (Eds.), Biotechnological approaches in biocontrol of plant pathogens (pp. 31-49). Boston, EE. UU.: Springer.spa
dc.relation.referencesHelbig, J. (2002). Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biocontrol, 47(1), 85-99. doi:10.1023/A:1014466903941.spa
dc.relation.referencesKarabulut, O. A., & Baykal, N. (2003). Biological control of postharvest diseases of peaches and nectarines by yeasts. Journal of Phytopathology, 151(3), 130-134. doi:10.1046/ j.1439-0434.2003.00690.x.spa
dc.relation.referencesKarabulut, O. A., & Baykal, N. (2004). Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection, 23(5), 431-435. doi:10.1016/j.cropro.2003.09.012.spa
dc.relation.referencesKarabulut, O. A., Arslan, U., Kadir, I., & Gul, K. (2005). Integrated control of post harvest diseases of sweet cherry with yeast antagonist and sodium bicarbonate applications within a hydrocooler. Postharvest Biology and Technology, 37(2), 135-141. doi:10.1016/j.postharvbio.2005.03.003.spa
dc.relation.referencesKecskemeti, E., Berkelmann-Lohnertz, B., & Reineke, A. (2016). Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera l.) different between conventional, organic, and biodynamic grapes? PLoS One, 11, e0160852. doi:10.1371/journal. pone.0160852.spa
dc.relation.referencesKefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1), 8-11. doi:10.1016/j.postharvbio.2008.03.007.spa
dc.relation.referencesKim, Y. K., Saito, S., & Xiao, C. L. (2015). Occurrence of Fludioxonil resistance in Penicillium digitatum from citrus in california. Plant Diseases, 99(10), 1447. doi:10.1094/ PDIS-02-15-0226-PDN.spa
dc.relation.referencesKinay, P., & Yildiz, M. (2008). The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control, 45(3), 433-440. doi:10.1016/j.biocontrol.2008.03.001.spa
dc.relation.referencesKoomen, I., & Jeffrics, P. (1993). Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango. Plant Pathology, 42(2), 230-237. doi:10.1111/j.1365-3059.1993. tb01495.x.spa
dc.relation.referencesKota, V. R., Kulkarni, S., & Hegde, Y. R. (2006). Postharvest diseases of mango and their biological management. Journal of Plant Disease Science, 1(2), 186-188.spa
dc.relation.referencesKrishnamurthy, S., & Kushalappa, C. G. (1985). Studies on the shelf life and quality of Robusta bananas as affected by post-harvest treatments. Journal of Horticultural Science, 60(4), 549-556. doi: 10.1080/14620316.1985.11515663.spa
dc.relation.referencesLacroix, C. (2010). Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Cambridge, Inglaterra: Elsevier.spa
dc.relation.referencesLahlali, R., Raffaele, B., & Jijakli, M. H. (2011). UV protectants for Candida oleophila (strain O), a biocontrol agent of postharvest fruit diseases. Plant Pathology, 60(2), 288-295. doi:10.1111/j.1365-3059.2010.02368.x.spa
dc.relation.referencesLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruits in Morocco. Communations in Agriculture Applied Biological Sciences, 69(4), 601-609.spa
dc.relation.referencesLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005a). Development of a biological control method against postharvest diseases of citrus fruits. Communications in Agriculture Applied Biological Sciences, 70(3), 47-58.spa
dc.relation.referencesLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005b). Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. International Journal of Food Microbiology, 103(3), 315- 322. doi:10.1016/j.ijfoodmicro.2005.02.002.spa
dc.relation.referencesLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruit in Morocco. Communications in agricultural and applied biological sciences, 69(4), 601-609spa
dc.relation.referencesLarena, I., Torres, R., de Cal, A., Linan, M., Melgarejo, P., Domenichini, P., … Usall, J. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 32(2), 305-310. doi:10.1016/j.biocontrol.2004.10.010.spa
dc.relation.referencesLassois, L., de Bellaire, L., & Jijakli, M. H. (2008). Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biological Control, 45(3), 410-418. doi:10.1016/j.biocontrol.2008.01.013.spa
dc.relation.referencesLavalard, M. (2017). Agrauxine and Syngenta start a partnership to launch Nexy®. Recuperado de https://www.agrauxine. com/es/2017/05/12/agrauxine-syngenta-nexy/.spa
dc.relation.referencesLima, G., Curtis, F. D., Piedimonte, D., Spina, A. M., & De Cicco, V. (2006). Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea. Postharvest Biology and Technology, 40(3), 301-307. doi:10.1016/j.postharvbio.2006.01.017.spa
dc.relation.referencesLiu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153-160. doi:10.1016/j. ijfoodmicro.2013.09.004.spa
dc.relation.referencesLong, C. A., Deng, B. X., & Deng, X. (2006). Pilot testing of Kloeckera apiculata for the biological control of postharvest diseases of citrus. Annals of Microbiology, 56(1), 13-17. doi:10.1007/BF03174963.spa
dc.relation.referencesLong, C. A., Deng, B. X., & Deng, X. (2007). Commercial testing of Kloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Annals of Microbiology, 57(2), 203-207. doi:10.1007/BF03175208.spa
dc.relation.referencesMagan, N., Medina, A., & Aldred, D. (2011). Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathology, 60(1), 150-163. doi:10.1111/j.1365-3059.2010.02412.x.spa
dc.relation.referencesMari, M., Neri, F., & Bertolini, P. (2007). Novel approaches to prevent and control postharvest diseases of fruits. Stewart Postharvest Review, 3(6), 4 doi:10.2212/spr.2007.6.4.spa
dc.relation.referencesMarquina, D., Santos, A., & Peinado, J. (2002). Biology of killer yeasts. International Microbiology, 5(2), 65-71. doi:10.1007/s10123-002-0066-z.spa
dc.relation.referencesMartins, G., Vallance, J., Mercier, A., Albertin, W., Stamatopoulos, P., Rey, P., … Masneuf-Pomarède, I. (2014). Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. International Journal of Food Microbiology, 177, 21-28. doi:10.1016/j. ijfoodmicro.2014.02.002.spa
dc.relation.referencesMason, D., & Dennis, C. (1978). Post-harvest spoilage of Scottish raspberries in relation to pre-harvest fungicide sprays. Londres, Reino Unido: Horticultural Research.spa
dc.relation.referencesMassart, S., Martinez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/ j.biocontrol.2015.06.003.spa
dc.relation.referencesMikani, A., Etebarian, H. R., Sholberg, P. L., Gorman, D. T., Stokes, S., & Alizadeh, A. (2008). Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biology and Technology, 48(1), 107-112. doi:10.1016/j.posthar vbio.2007.09.020.spa
dc.relation.referencesMontesinos-Herrero, C., del Río, M.Á., Pastor, C., Brunetti, O., & Palou, L. (2009). Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biology and Technology, 52(1), 117-125. doi:10.1016/j. postharvbio.2008.09.012.spa
dc.relation.referencesMorales, H., Sanchis, V., Usall, J., Ramos, A. J., & Marín, S. (2008). Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. International Journal of Food Microbiology, 122(1-2), 61-67. doi:10.1016/j. ijfoodmicro.2007.11.056.spa
dc.relation.referencesNational Research Council (nrc). (1987). Management of technology: The hidden competitive advantage. Washington, EE. UU.: National Research Council, The National Academies Press.spa
dc.relation.referencesNunes, C., Teixido, N., Usall, J., & Viñas, I. (2001). Biological control of major postharvest diseases on pear fruit with antagonistic bacteria Pantoea agglomerans (CPA-2). Acta Horticulturae, 553, 403-404. doi:10.17660/Acta Hortic.2001.553.92.spa
dc.relation.referencesNunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal Applied Microbiology, 92(2), 247-255. doi:10.1046/j.1365- 2672.2002.01524.x.spa
dc.relation.referencesNunes, C., Usall, J., Teixido, N., Torres, R., & Viñas, I. (2002). Control of Penicillium expansum and Botrytis cinerea on apples and pears with a combination of Candida sake (CPA-1) and Pantoea agglomerans. Journal of Food Protection, 65(1), 178-184.spa
dc.relation.referencesNunes, C., Usall, J., Manso, T., Torres, R., Olmo, M., & García, J. M. (2007). Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food Science and Technology International, 13(1), 63- 68. doi:10.1177/1082013207075601.spa
dc.relation.referencesNunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196. doi:10.1007/s10658-011-9919-7.spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015a). Iniciativa mundial sobre la reducción de la pérdida y el desperdicio de alimentos. Recuperado de http://www.fao.org/3/a-i4068s.pdf.spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015b). Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Recuperado de http://www.fao.org/3/a-i5504s.pdf.spa
dc.relation.referencesPalou, L. (2011). Control integrado no contaminante de enfermedades de poscosecha (cincep): nuevo paradigma para el sector español de los cítricos. Levante Agrícola, (406), 173-183.spa
dc.relation.referencesPalou, L., Smilanick, J., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review, 4(2), 1-16.spa
dc.relation.referencesPark, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109-112. doi:10.1016/j.postharvbio.2014.09.013.spa
dc.relation.referencesPerez, M. F., Contreras, L., Garnica, N. M., Fernández-Zenoff, M. V., Farías, M. E., Sepulveda, M., … Dib, J. R. (2016). Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE, 11(10), e0165590. doi:10.1371/journal.pone.0165590.spa
dc.relation.referencesPrusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 155-176. doi:10.1146/annurevphyto-082712-102349.spa
dc.relation.referencesPusey, P. L. (1989). Use of Bacillus subtilis and related organisms as biofungicides. Pesticide Science, 27(2), 133- 140. doi:10.1002/ps.2780270204.spa
dc.relation.referencesPusey, P. L., & Wilson, C. L. (1984). Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Diseases, 68(9), 753-756. doi:10.1094/PD-69-753.spa
dc.relation.referencesQin, G. Z., & Tian, S. P. (2004). Biocontrol of postharvest diseases of jujube fruit by Cryptococcus laurentii combined with a low doses of fungicides under different storage conditions. Plant Disease, 88(5), 497-501.spa
dc.relation.referencesRay, R. C., Swain, M. R., Panda, S. H., & Lata. (2011). Microbial control of postharvest diseases of fruits, vegetables, roots, and tubers. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (pp. 311-355). Berlín, Alemania: Springer. doi:10.1007/978-3-642-19769-7_13.spa
dc.relation.referencesSaravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/s10658-008-9355-5.spa
dc.relation.referencesSchena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology Technology, 30(3), 209-220. doi:10.1016/S0925-5214(03)00111-X.spa
dc.relation.referencesSeethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanalinduced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158-166. doi:10.1080/17429 145.2016.1252068.spa
dc.relation.referencesSelitrennikoff, C. P. (2001). Antifungal Proteins. Applied Environmental Microbiology, 67(7), 2883-2894. doi:10.1128/aem.67.7.2883-2894.2001.spa
dc.relation.referencesSharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j.biocontrol.2009.05.001.spa
dc.relation.referencesSivakumar, D., Wilson Wijeratnam R. S., Marikar, F. M. M. T., Abeyesekere M., & Wijesundera R. L. C. (2001). Antagonistic effect of Trichoderma harzianum on post harvest pathogens of rambutans. Acta Horticulturae, 553, 389-392. doi:10.17660/ActaHortic.2001.553.88.spa
dc.relation.referencesSivakumar, D., Wilson Wijeratnam, R. S., Abeyesekere, M., & Wijesundera R. L. C. (2002). Combined effect of generally regarded as safe (gras) compounds and Trichoderma harzianum on the control of postharvest diseases of rambutan. Phytoparasitica, 30(1), 43-51. doi:10.1007/BF02983969.spa
dc.relation.referencesSivakumar, D, Wilson Wijeratnam, R. S., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica, 28(3), 240-247. doi:10.1007/ BF02981802.spa
dc.relation.referencesSmilanick, J. L., & Denis-Arrue, R. (1992). Control of green mold of lemons with Pseudomonas species. Plant Disease, 76(5), 481-485. doi:10.1094/PD-76-0481.spa
dc.relation.referencesSpadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39- 49. doi:10.1016/j.tifs.2015.11.003.spa
dc.relation.referencesSpadaro, D., Vola, R., Piano, S., & Gullino, M. L. (2002). Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 24(2), 123-134. doi:10.1016/S0925-5214(01)00172-7.spa
dc.relation.referencesSpadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2), 185-194. doi:10.1016/s0168-1605(03)00380-5.spa
dc.relation.referencesSpadaro, D., Garibaldi, A., & Gullino, M. L. (2004). Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or etanol application. Postharvest Biology and Technology, 33(2), 141-151. doi:10.1016/j.postharvbio.2004.02.002.spa
dc.relation.referencesSyamaladevi, R. M., Lupien, S. L., Bhunia, K., Sablani, S. S., Dugan, F., Rasco, B., Killinger, et al. (2014). UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage. Postharvest Biology and Technology, 87, 27-32. doi:10.1016/j.postharvbio.2013.08.005.spa
dc.relation.referencesTakesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., et al. (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. The Journal of Antibiotics (Tokyo), 44(9), 919-924. doi:10.7164/antibiotics.44.919.spa
dc.relation.referencesTerao, D., De Carvalho Campos, J. S., Benato, E. A., & Hashimoto, J. M. (2015). Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-c irradiation. Food Engineering Reviews, 7(2), 171-175. doi:10.1007/s12393- 014-9089-4.spa
dc.relation.referencesTian, S., Fan, Q, Xu, Y, & Liu H. (2002). Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 86(8), 848-853. doi:10.1094/PDIS.2002.86.8.848.spa
dc.relation.referencesTian, S., Qin, G., & Xu, Y. (2005). Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. Journal of Food Protection, 68(3), 544-550.spa
dc.relation.referencesTorres, R., Teixidó, N., Viñas, I., Mari, M., Casalini, L., Giraud, M., & Usall J. (2006). Efficacy of andida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. Journal of Food Protection, 69(11), 2703-2711. doi:10.4315/0362-028X-69.11.2703.spa
dc.relation.referencesTronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands journal of plant pathology, 83(Supl. 1), 449. doi:10.1007/ bf03041462.spa
dc.relation.referencesUsall, J., Teixido, N., Torres, R., Ochoa de Eribe, X., & Viñas I. (2001). Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biology and Technology, 21(2), 147-156. doi:10.1016/S0925-5214(00)00131-9.spa
dc.relation.referencesValencia-Chamorro, S. A., Palou, L., Del Rio, M. A., & Perez-Gago, M. B., (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Review in Food Science and Nutrition, 51(9), 872-900. doi:10.1080/10408398.2010. 485705.spa
dc.relation.referencesWang, X., Li, G., Jiang, D., & Huang, H. C. (2009). Screening of plant epiphytic yeasts for biocontrol of bacterial fruit blotch (Acidovorax avenae subsp. citrulli) of hami melon. Biological Control, 50(2), 164-171. doi:10.1016/j. biocontrol.2009.03.009.spa
dc.relation.referencesWeir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73(1), 115-180. doi:10.3114/sim0011.spa
dc.relation.referencesWilson, C. L., & El-Ghaouth, A. (2002). Patent EUA 6423310. Biological coating with a protective and curative effect for the control of postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA.spa
dc.relation.referencesWilson, C. L., & Pusey, P. (1985). Potential for biological control of postharvest plant diseases. Plant Diseases, 69(5), 375-378. doi:10.1094/PD-69-375.spa
dc.relation.referencesWilson, C. L., & Wisniewski, M. E. (1989). Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annual Review of Phytopathology, 27, 425-441. doi:10.1146/annurev.py.27.090189.002233.spa
dc.relation.referencesWilson, C. L., & Wisniewski, M. E. (1994). Biological control of postharvest diseases: theory and practice. Madison, EE. UU.: CRC Press. Wilson, C. L. Wisniewski, M. E., Droby, S., & Chalutz, E. (1993). A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia Horticulturae, 53(3), 183-189. doi:10.1016/0304- 4238(93)90066-Y.spa
dc.relation.referencesWisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C., & Chalutz, E. (1991). Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 39(4), 245- 258. doi:10.1016/0885-5765(91)90033-E.spa
dc.relation.referencesWisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012.spa
dc.relation.referencesWisniewski, M., Wilson, C., Droby, S., Chalutz, E., ElGhaouth, A., & Stevens, C. (2007). Postharvest biocontrol: new concepts and applications. En C. Vincent, M. S. Goettel, & L. George (Eds.), Biological control: a global perspective: case studies from around the world (p. 262-273). Boca Ratón, EE. UU.: CAB International.spa
dc.relation.referencesWisniewski, M., Wilson, C., & Hershberger, W., (1989). Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Canadian Journal of Botany, 67(8), 2317-2323. doi:10.1139/ b89-296.spa
dc.relation.referencesWu, F., & Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food additives and contaminants Part A, 27(4), 496-509. doi:10.1080/19440040903437865.spa
dc.relation.referencesYang, D. M., Bi, Y., Chen, X. R, Ge, Y. H, & Zhao, J. (2006). Biological control of postharvest diseases with Bacillus subtilis (B1 strain) on muskmelons (Cucumis melo L. cv. Yindi). Acta Horticulturae, 712, 735-740. doi:10.17660/ ActaHortic.2006.712.94.spa
dc.relation.referencesYao, H. J., & Tian, S. P. (2005). Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology, 98(4), 941-950. doi:10.1111/ j.1365-2672.2004.02531.x.spa
dc.relation.referencesZhang, H., Zheng, X., Fu, C., & Xi, Y. (2003). Biological control of blue mold rot of pear by Cryptococcus laurentii. Journal of Horticultural Science and Biotechnology, 78(6), 888-893. doi:10.1080/14620316.2003.11511714.spa
dc.relation.referencesZhang, H., Zheng, X., Fu, C., & Xi, Y. (2005). Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biology and Technology, 35(1), 79-86. doi:10.1016/j.postharvbio.2004.03.011.spa
dc.relation.referencesZhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292. doi:10.1016/j. biocontrol.2006.10.008.spa
dc.relation.referencesZhang, H., Zheng, X., Wang, L., Li, S., & Liu, R. (2007). Effect of antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. Journal of Food Engineering, 78(1), 281-287. doi:10.1016/j. jfoodeng.2005.09.027.spa
dc.relation.referencesZhang, H., Zheng, X., & Yu, T. (2007). Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control, 18(4), 287-291. doi:10.1016/j. foodcont.2005.10.007.spa
dc.relation.referencesZhang H, Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng X. (2008) Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. doi:10.1016/j. biocontrol.2008.06.012.spa
dc.relation.referencesZhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., & Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79-83. doi:10.1016/j. biocontrol.2008.09.004.spa
dc.relation.referencesZhao, Y., Shao, X. F, Tu, K., & Chen, J. K. (2007). Inhibitory effect of Bacillus subtilis B10 on the diseases of postharvest strawberry. International Journal of Fruit Science, 24(3), 339-343.spa
dc.relation.referencesZhou, T., Northover, J., & Schneider, K. E. (1999). Biological control of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology, 21(4), 375-381. doi:10.1080/07060669909501174.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.type.driverinfo:eu-repo/semantics/bookPart
dc.type.redcolhttps://purl.org/redcol/resource_type/CAP_LIB
dc.identifier.reponamereponame:Biblioteca Digital Agropecuaria de Colombiaspa
dc.identifier.repourlrepourl:https://repository.agrosavia.co
dc.identifier.instnameinstname:Corporación colombiana de investigación agropecuaria AGROSAVIAspa
dc.type.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.relation.ispartofbook33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International