Autocompatibilidad e Intercompatibilidad Sexual de Materiales de Cacao

Modelos para el empleo de los materiales de cacao más usados en Colombia utilizando los mejores porcentajes de intercompatibilidad

UNIÓN TEMPORAL CACAO DE COLOMBIA UNO

Bucaramanga 2008
Autocompatibilidad e Intercompatibilidad Sexual de Materiales de Cacao

Modelos para el empleo de los materiales de cacao más usados en Colombia utilizando los mejores porcentajes de intercompatibilidad

UNIÓN TEMPORAL CACAO DE COLOMBIA UNO

Bucaramanga 2008

1. J.A. M.Sc. Fitopatologo Director Programa de Investigación Fedecacao
2. J.A. Asistente Programa de Investigación Fedecacao
3. BioL. Biestadsttica Unión Temporal Cacao de Colombia Uno
Agradecimientos

La Federación Nacional de Cacaoteros y la Corporación Colombiana de Investigación Agropecuaria, agradecen a todas las personas e instituciones que hicieron posible el desarrollo del proyecto, tales como el Ministerio de Agricultura y Desarrollo Rural, cofinanciador principal, así como al Servicio Nacional de Aprendizaje SENA y la Sociedad de Agricultores de Colombia, SAC, quienes contribuyeron al desarrollo del Seminario Internacional de Cacao-Avances de Investigación y publicación de esta cartilla.

Se brindan especiales agradecimientos a las personas que directamente participaron en la realización de esta investigación; Gilberto Gómez, Nelson Báez y Edith Moreno pertenecientes al Programa de Investigación de la Federación Nacional de Cacaoteros en San Vicente de Chucurí. También se hace un reconocimiento por el apoyo del personal de las Unidades Técnicas de FEDECACAO en Tame: Marlen Caviche, Yarima Robles y Dora Isaza (q.e.p.d.), en Puerto Tejada a Leobardo Hoyos y en Andalucía a Viviana Londoño, así como los estudiantes de pasantía y tesis de Karen Ávila, Oscar Mauricio Galvez, Oscar Hernando Sánchez y Julio Andrés Peñuela y la colaboración en la revisión del texto al Dr. Jacob Rojas, Gerente Técnico de la Federación Nacional de Cacaoteros, y el apoyo de Raúl Rincón propietario de la Granja La Milagrosa en el municipio de Rionegro, Santander.

Representante Legal y Presidente Ejecutivo
José Omar Pinzón Useche - FEDECACAO

Director Ejecutivo
Arturo Vega Barón - CORPOICA

Contacto Institucional
Jacob Rojas Ardila - FEDECACAO
Alvaro Uribe Cálid - CORPOICA

Programa
Mejoramiento Genético para Incrementar la Producción y Productividad del Sistema de Cacao en Colombia.
Líder - Fabio Aranzazu Hernández - FEDECACAO

Proyecto
Continuación de la evaluación de materiales regionales de cacao y de algunos clones universales ya establecidos en el país.
Líder - Fabio Aranzazu Hernández - FEDECACAO

Colider
Gildardo Palencia Calderón - CORPOICA

Cofinanciador
Ministerio de Agricultura y Desarrollo Rural (MADR)

Interventor
Instituto Interamericano de Cooperación para la Agricultura (IICA)

Socios
Universidad Industrial de Santander
Universidad Pedagógica y Tecnológica de Colombia
Universidad Francisco de Paula Santander
Compañía Nacional de Chocolates
Casa Luker
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentación</td>
<td>5</td>
</tr>
<tr>
<td>Introducción</td>
<td>7</td>
</tr>
<tr>
<td>La intercompatibilidad sexual en cacao</td>
<td>7</td>
</tr>
<tr>
<td>Justificación</td>
<td>9</td>
</tr>
<tr>
<td>Antecedentes</td>
<td>10</td>
</tr>
<tr>
<td>Metodología</td>
<td>10</td>
</tr>
<tr>
<td>Resultados</td>
<td>11</td>
</tr>
<tr>
<td>Caracterización de materiales en Colombia para establecer modelos de siembra</td>
<td>14</td>
</tr>
<tr>
<td>Modelos de Siembra</td>
<td>14</td>
</tr>
<tr>
<td>Aporte de los modelos</td>
<td>19</td>
</tr>
<tr>
<td>Modelos para rehabilitación de árboles de cacao con injertación doble en chupón basal o tronco</td>
<td>20</td>
</tr>
<tr>
<td>Referencias Bibliográficas</td>
<td>24</td>
</tr>
</tbody>
</table>
PRESENTACIÓN

Colombia es un país de múltiples fortalezas para producir eficientemente cacao, con potencialidad no solo de abastecer la industria nacional sino de generar excedentes exportables con valor agregado, ofreciendo productos de excelente calidad procedentes de nichos u orígenes específicos.

Su fortaleza se afianza en la excelente ubicación geográfica, la existencia de diferentes pisos altitudinales con gran cantidad de tierras aptas para el cultivo, amplia diversidad genética tanto de materiales introducidos, como de regionales. Así mismo, hay reconocimiento internacional como país productor de cacao de alta calidad por su sabor y aroma; contando también con una amplia tradición cacaotera con personas que tienen conocimientos técnicos y científicos. También posee instituciones sólidas para atender el cultivo, entre las que sobresalen la Federación Nacional de Cacaoteros (FEDECACAO) y la Corporación Colombiana de Investigación Agropecuaria (CORPOICA), apoyadas por la industria, varias ONG y Cooperativas de agricultores.

El documento que se entrega, pretende potencializar el 17% que aporta la genética en la ecuación de producción de cacao, pues suministra las herramientas para racionalizar el manejo del recurso genético, aprovechando los mejores grados de intercompatibilidad de los materiales, agrupados por características específicas definidas en calidad del grano, producción, resistencia a enfermedades y tamaño del árbol.

El fin primordial del documento es entregar la matriz de compatibilidad sexual de los materiales básicos, para que sea una herramienta permanente de consulta para viveristas, injertadores, agricultores y técnicos de cacao.

JACOB ROJAS ARDILA
Gerente Técnico
Federación Nacional de Cacaoteros
INTRODUCCIÓN

El cacao es un cultivo tradicional el cual es cultivado en Colombia por cerca de 25.000 familias. Por muchos años, esta actividad afrontó la problemática de enfermedades como la Ceratosyris, que diezmó la población de cacaos criollos, y posteriormente la Monilia y la Escoba de Bruja. Actualmente se enfrenta a la ineficiencia productiva de las plantaciones híbridas, de avanzada edad e inadecuado manejo, así como la existencia de un gran porcentaje de árboles improductivos o de muy baja producción, ocasionado por el fenómeno conocido como “incompatibilidad sexual”.

Actualmente y para enfrentar este fenómeno, se busca mejorar los rendimientos en términos de volumen de grano por unidad de área y por ende los ingresos para el productor mediante la modernización del sistema de producción de cacao; además, se vienen impulsando nuevas plantaciones con el uso de clones propagados a través de métodos de injertación.

Estos materiales en su mayoría, fueron introducidos en el siglo pasado desde Trinidad y Ecuador y actualmente seleccionados localmente. Sin embargo, a pesar de este evidente avance aún se requieren ajustes a los modelos de siembra, que contemplan criterios sobre compatibilidad e intercompatibilidad sexual, que eviten errores a la hora de establecer los arreglos o la distribución en campo de los materiales empleados, de tal manera que se garantice un óptimo de eficiencia en la fertilidad floral y por ende en el cuajamiento de frutos.

LA INTERCOMPATIBILIDAD SEXUAL EN CACAO

Es necesario recordar que el cacao es una planta típica de polinización cruzada y que depende de la acción de los insectos para polinizarse, especialmente por parte del diptero del género Forcipomyia. En la Figura 1, se presenta un esquema del recorrido de este insecto polinizador al interior de los órganos de la flor de cacao y la forma de cargar los granos de polen.

La incompatibilidad sexual es un fenómeno genético, regido por un proceso bioquímico en el momento del reconocimiento, aceptación o rechazo del polen, lo cual se produce en el tubo polínico de la flor receptora y en algunos casos en el estigma. La incompatibilidad sexual se expresa en términos de porcentaje de flores que presentan cuajamiento de fruto en un evento de polinización manual o artificial.
La no fusión de los gametos puede ocurrir en 25, 50 o 100% de los óvulos, que para cacao fluctúa entre 50 y 60. Cuando una flor de cacao recibe menos de 25 granos de polen o solo son fecundados menos del 50% de los óvulos de la flor, ocurre la marchitez del pepino, en este caso debido a factores genéticos (marchitez diferencial) (COPE, 1958).

Cuando las flores de una planta son debidamente polinizadas, con una efectividad mayor al 30%, por polen de ella misma o por polen de flores del mismo árbol, la planta es AUTOCOMPATIBLE (AC).

Cuando la flor no acepta su propio polen o polen del mismo árbol se le denomina AUTOINCOMPATIBLE (AI).

Cuando las flores de una planta generalmente auto incompatible son fecundadas con polen de otra planta, se dice que es un cruce compatible con ella y se reconoce como INTERCOMPATIBLE (IC).

La no fusión de los gametos puede ocurrir en 25, 50 o 100% de los óvulos, que para cacao fluctúa entre 50 y 60. Cuando una flor de cacao recibe menos de 25 granos de polen o solo son fecundados menos del 50% de los óvulos de la flor, ocurre la marchitez del pepino, en este caso debido a factores genéticos (marchitez diferencial) (COPE, 1958).

Cuando la flor no puede ser fecundada con polen de otra planta se dice que es un cruce INTERINCOMPATIBLE (II).

Para mejor entendimiento, en la Figura 2 se presenta un esquema de los posibles casos de compatibilidad sexual en cacao. En la Figura 3, se muestra la flor de cacao con sus partes principales.

LA COMPATIBILIDAD SE DA:

A NIVEL DE LA MISMA PLANTA

Resultados positivos de la polinización:

AUTO – COMPATIBLE (AC)

AUTO – INCOMPATIBLE (AI)

Resultados negativos de la polinización:

A NIVEL DE LAS PLANTAS CIRCUNDANTES

INTER – COMPATIBLE (IC)

INTER – INCOMPATIBLE (II)

Figura 2. Esquema de los casos que se pueden presentar sobre la compatibilidad sexual en cacao.
Justificación

En el actual desarrollo cacaotero, Colombia debe procurar el empleo de una mayor diversidad genética, que sea económicamente eficiente, competitiva y que se utilicen de una manera racional y lógica, los mejores materiales introducidos, en conjunto con materiales regionales; los cuales deben ser agrupados en forma ordenada dentro de las plantaciones, según el grado de intercompatibilidad sexual, por características o potencialidades especiales, aplicando el concepto de “juntos pero no revueltos”.

![Figura 3. Partes de la flor de Cacao.](image)

Sin embargo, existe el riesgo de errores y anomalías que afectan la productividad, lo cual se debe prevenir desde la siembra evitando problemas agronómicos futuros de difícil y costosa solución, dadas las siguientes situaciones:

- El número de hectáreas para sembrar se incrementa y en muchas regiones existe muy poca oferta de material clonal, muchas veces restringido por el viverista o el inyectador.

- En algunos casos la inyección se ha venido realizando por bloques de un mismo material, con marcada preferencia a utilizar el clon CCN 51, ICS 95 y TSH 565.

- Desconocimiento del fenómeno de la compatibilidad sexual en cacao y de las implicaciones nefastas a las que conduce.

- Desconocimiento del potencial productivo, calidad y comportamiento sanitario de los principales materiales por la gran mayoría de profesionales, técnicos, inyectadores y viveristas.

- Deterioro vegetativo de algunas plantaciones clonales por falta de podas de formación.

- Uso de material no recomendado o yemas de híbridos de dudoso comportamiento.

Esta situación conlleva a pensar que es necesario realizar algunos estudios como:

- Revisión de la calidad, cantidad y proporciones de los materiales clonales que se están utilizando en el país.
- Construir la ficha técnica de cada material y clasificarlos por características especiales (índice de mazorca y grano, eficiencia productiva, resistencia a Monilia y Escoba de Bruja y comportamiento fisiológico entre otros).

- Construir la matriz de compatibilidad e intercompatibilidad sexual de los clones más utilizados, involucrando algunos materiales regionales.

- Definir y proponer algunos diseños y modelos de siembra, teniendo en cuenta las características especiales de los materiales y su intercompatibilidad sexual.

El escenario y la oportunidad para que el país iniciara en una forma sistematizada estos estudios, se dio dentro de la Convocatoria para proyectos de Investigación realizada por el Ministerio de Agricultura y Desarrollo Rural en el año 2004, que aportó recursos de Cofinanciación, ejecutados por FEDECACAO y CORPOICA, dentro de la Unión Temporal “Cacao de Colombia 1”, con la participación de algunos socios de la Cadena Cacao-Chocolate tales como: la Universidad Industrial de Santander, Casa Luker y Compañía Nacional de Chocolates entre otros.

Antecedentes

Los profesionales del Centro de Investigación de cacao en Brasil -CEPEC-, conscientes que los materiales de cacao seleccionados por ellos, para afrontar el problema de Escoba de Bruja en Bahía, eran materiales auto-incompatibles y que se desconocía su grado de afinidad o intercompatibilidad sexual, pusieron la primera alerta en el mundo sobre los problemas que vendrían con la siembra comercial de materiales clonales.

Para contrarrestar este fenómeno, en Brasil se realizaron los primeros estudios de intercompatibilidad de los materiales comerciales, generando una matriz y las primeras recomendaciones sobre su empleo (Martins-Pinto et al., 1998).

En Colombia, como producto de las experiencias y capacitación recibidas en Brasil, se inició la realización de este tipo de trabajos y fue así como la Compañía Nacional de Chocolates, realizó un trabajo pionero con 11 clones denominado “Características de compatibilidad sexual de algunos clones de cacao y su aplicación en siembras comerciales” (Cadavid-Vélez, 2006).

A partir del año 2005, los investigadores de Fedecacao dentro de la Unión Temporal Cacao de Colombia Uno, desarrollaron un estudio más amplio donde involucraron varios materiales universales y regionales, definiendo la matriz de compatibilidad sexual, la clasificación de los materiales por características especiales, que permitió el diseño de modelos de siembra y modelos para rehabilitar la copa de árboles improductivos de cacao, mediante inyección doble, con el uso materiales intercompatibles, de acuerdo con los resultados de las pruebas de compatibilidad.

Metodología

Para desarrollar los estudios de compatibilidad sexual y definir si un material es auto-compatible o intercompatible, se realizaron cruzamientos dirigidos en forma manual.

Para calificar si un material es autocompatible o intercompatible se fijó el límite de 30% que es el más estricto de los utilizados por los genetistas. En la práctica consiste en polinizar manualmente 20 flores y si luego de 15 días se obtiene un número mínimo de 6 flores
fecundadas, se dice que el cruce es compatible (Terreros et al., 1983).

Resultados

Con los resultados obtenidos de esta metodología, se construyó la matriz de compatibilidad sexual para los 21 materiales más utilizados en Colombia.

En las Figuras 4 y 5 se presentan las matrices de compatibilidad de los clones más usados en Colombia y en el Pie de Monte Llanero, resaltando en la línea diagonal la autocompatibilidad de los materiales. El grado de intercompatibilidad se representa con colores definidos (verde y rojo); resaltando los cruces con mayor grado de afinidad sexual a nivel del 70%, con estrella blanca.

Como se detalla en las dos matrices, en la línea diagonal, con color azul se ubica el resultado del grado de autocompatibilidad (AC) de los materiales así: ICS 1 con 96%, ICS 6 con 60%, ICS 95 con 86%, TSH 812 con 60%, EET 96 con 70%, CCN 51 con 63%. Así como los clones regionales FTA 2 con 55% y FEAR 5 con 50%.

En color verde, se detallan los cruces que fueron intercompatibles (IC), con afinidad igual o superior al 30%, resultando con estrella blanca aquellos materiales que ofrecieron una intercompatibilidad sexual igual o superior al 70%; por lo tanto, son los materiales o cruces que deben ser escogidos en el momento de diseñar modelos de siembra, dado que garantizan una mejor eficiencia en la polinización y finalmente en los rendimientos.

Con color rojo se resaltan los cruces que resultaron interincompatibles (II), con afinidad entre 0 y 29%. Por lo tanto, deben ser evitados y no sembrarlos en líneas adyacentes para no afectar los rendimientos.

Entre los aspectos más sobresalientes de las dos matrices y del estudio se destaca que:

- Los mejores materiales donadores de polen (Compatibilidad paterna), son: IMC 67, CCN 51, TSH 565, ICS 6 y CAU 43.

- Los materiales con mayor disposición para aceptar polen (Compatibilidad materna), son: ICS 95, TSH 565, TSH 792, TSH 812 e ICS 6.

- Los materiales con mayores restricciones para donar su polen son ICS 60, ICS 39, MON 1 y SC 6.

- Los materiales con las mayores restricciones para recibir polen de sus vecinos: CAP 34, SCC 61, FLE 2, CCN 51.
Figura 4. Matriz de compatibilidad de los clones más usados en Colombia

MADRE (♀)	1	6	39	60	95	65	565	1	95	60	95	565	39	60	1	66	67	39	60	95	65	565	1	95	60	95	565	39	60	1	66	67				
PADRE (♂)	ICS	TSH	EET	CCN	IMC	1	95	60	95	65	565	1	95	60	95	565	39	60	1	66	67	39	60	95	65	565	1	95	60	95	565	39	60	1	66	67

Inter-Compatible (≥ 70%)
Auto-Compatible (≥ 30%)
Auto-Incompatible (< 30%)
Por Determinar
<table>
<thead>
<tr>
<th>MADRE (♀)</th>
<th>PADRE (♂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS</td>
<td>1 3 95 3 85 63 ICS</td>
</tr>
<tr>
<td>CCN</td>
<td>1 3 95 3 85 63 CCN</td>
</tr>
<tr>
<td>TSH</td>
<td>1 3 95 3 85 63 TSH</td>
</tr>
<tr>
<td>EET</td>
<td>1 3 95 3 85 63 EET</td>
</tr>
<tr>
<td>CAU</td>
<td>1 3 95 3 85 63 CAU</td>
</tr>
<tr>
<td>IMC</td>
<td>1 3 95 3 85 63 IMC</td>
</tr>
<tr>
<td>MON</td>
<td>1 3 95 3 85 63 MON</td>
</tr>
<tr>
<td>FIA</td>
<td>1 3 95 3 85 63 FIA</td>
</tr>
<tr>
<td>FTA</td>
<td>1 3 95 3 85 63 FTA</td>
</tr>
<tr>
<td>FSA</td>
<td>1 3 95 3 85 63 FSA</td>
</tr>
<tr>
<td>FEAR</td>
<td>1 3 95 3 85 63 FEAR</td>
</tr>
</tbody>
</table>

Figura 5. Matriz de compatibilidad sexual de los clones más usados en el Pie de Montana Llanero.

- **Auto-Compatibles (≥ 30%)**
- **Auto-Incompatibles (< 30%)**
- **Inter-Compatibles (≥ 70%)**
- **Inter-Incompatibles (< 30%)**
- **Por Determinar**
CARACTERIZACIÓN DE MATERIALES EN COLOMBIA PARA ESTABLECER MODELOS DE SIEMBRA

Aprovechando el seguimiento del comportamiento productivo, sanitario y fisiológico que Fedecacao viene realizando a los materiales establecidos en 18 jardines clonales y 33 parcelas de evaluación de materiales regionales, así como en las diferentes pruebas de inoculación artificial para la búsqueda de resistencia a Monilía, fue posible clasificarlos por características específicas, que permitirán un manejo más puntual del sistema de producción de cacao.

En el Cuadro 1, se clasifican los materiales por tamaño de grano, porte o tamaño del árbol e incidencia de Monilía.

Cuadro 1. Caracterización preliminar de materiales clonales de cacao en Colombia para establecer modelos de siembras.

<table>
<thead>
<tr>
<th>TAMANO DE GRANO</th>
<th>Grano Grande (≥ 1,7 g/grano)</th>
<th>Grano Medio (1,4 - 1,6 g/grano)</th>
<th>Grano Pequeño (≤1,3 g/grano)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICS 1, ICS 6, ICS 39, ICS 40, ICS 60, EET 8, MON 1, SC 6, SCC 61</td>
<td>CCN 51, UF 613, FLE 2, FLE 3, CAP 34, FTA 2</td>
<td>TSH 565, TSH 792, TSH 812, IMC 67, ICS 95, CAU 37, CAU 39, CAU 43, FSA 11, FSA 12, FSA 13, FTA 1, FEAR 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PORTE DEL ARBOL</th>
<th>Grande</th>
<th>Mediano</th>
<th>Pequeño</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICS 1, ICS 6, ICS 39, ICS 60, ICS 95, UF 613, EET 8, SCC 61, CAP 34</td>
<td>TSH 792, CAU 37, CAU 39, CAU 43, IMC 67, CCN 51, MON 1, FLE 2, FLE 3</td>
<td>TSH 565, TSH 812, EET 96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCIDENCIA DE MONILIA</th>
<th>Baja</th>
<th>Media</th>
<th>Alta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICS 95, CCN 51, CAU 37, CAU 39, CAU 43, FSA 12, FLE 2</td>
<td>FLE 3, FSA 13, FTA 1, IMC 67, SCC 61, FTA 2, TSH 792, TSH 812, ICS 6, FSA 11</td>
<td>ICS 1, ICS 39, ICS 60, MON 1, TSH 565, FEAR 5, EET 8, UF 613, CAP 34</td>
</tr>
</tbody>
</table>

MODELOS DE SIEMBRA

Una vez determinada la compatibilidad sexual de los materiales y conociendo las principales características de interés en cada uno de ellos, fue posible diseñar una serie de modelos que se proponen para afrontar las nuevas siembras comerciales con material clonado, que conducirán a una mejor competitividad del sistema de producción en cacao, que permitirán aumentar los rendimientos, mejorar la calidad del producto, afrontar mejor las enfermedades y bajar los costos de producción. Así mismo, se diseñaron modelos para intervenir árboles en forma individual en los procesos de rehabilitación de plantaciones con el empleo de injerto doble, utilizando yemas provenientes de dos clones distintos intercompatibles entre sí, en chupón basal o en tronco viejo.
En la Figuras 6, 7, 8, 9 y 10, se presentan una serie de modelos de siembra diseñados por características específicas, como alta producción, calidad, resistencia a Monilia y Escoba de Bruja, tamaño del árbol y autocompatibilidad.

Como se puede observar en las citadas figuras, cada modelo se construyó con el empleo de cuatro materiales o clones. La dirección de la flecha indica el flujo de polen y su porcentaje de aporte. El número al final indica el porcentaje promedio de intercompatibilidad de todo el modelo.

Cada modelo está diseñado para repetir la misma secuencia las veces que se requiera o lo permita el lote, obviamente manteniendo el mismo orden de los materiales. De fondo, los surcos deben conservar el mismo material en la cantidad que lo permita el lote, teniendo en cuenta algunas recomendaciones:

- Los lotes deben dividirse por modelo, separados por caminos o calles, con la posibilidad de identificar los materiales.

- Los modelos están diseñados para utilizar cada material en surco sencillo o línea doble. La distancia de siembra más aconsejada es de 3 x 3 por calle de 4 m, en especial para zonas planas. Sin embargo, se puede seguir usando 3 x 3 metros.

- Es conveniente que el modelo sea seleccionado de común acuerdo con las necesidades y perspectivas del agricultor.

- Los directores y responsables técnicos de los proyectos, deben hacer un seguimiento estricto al personal que realiza la injerterción, para garantizar el establecimiento correcto del modelo.

- Los modelos diseñados con solo materiales autocompatibles pueden tener más libertad, utilizando de 4 a 6 surcos por material. Así mismo, en los modelos donde intervenga algún material autocompatible, se puede ampliar a 4, el número de líneas de este material.

- El agricultor o el técnico, pueden construir otros modelos utilizando la matriz de compatibilidad sexual, empleando los cruces marcados con color verde.
Figura 6A. Modelos para alta producción y rendimiento.

Figura 6B. Modelos para alta producción y rendimiento.
<table>
<thead>
<tr>
<th>Núm.</th>
<th>Padres</th>
<th>% de Intercompatibilidad del Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ICS 1</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>ICS 1</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>ICS 1</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>ICS 1</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>ICS 1</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>ICS 1</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>ICS 1</td>
<td>55</td>
</tr>
</tbody>
</table>

Figura 7. Modelos para alta calidad y alto rendimiento por tamaño de grano (≥ 1.7 gramos).

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Padres</th>
<th>% de Intercompatibilidad del Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CCN 51</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>FLE 2</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>CAU 43</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>CCN 51</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>CCN 51</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>FTA 2</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>ICS 95</td>
<td>55</td>
</tr>
</tbody>
</table>

Figura 8. Modelos para resistencia a Monilia y Escoba de Bruja.
Figura 9. Modelos con materiales auto compatibles para alto rendimiento.
APORTE DE LOS MODELOS

Son numerosas las ventajas que se derivan de una utilización correcta de los materiales de siembra, aplicando los conocimientos de compatibilidad sexual y características específicas de cada material, resaltando las siguientes:

1. Se eleva la capacidad productiva de los materiales, mejorando la labor y eficiencia de los insectos polinizadores.

2. Se pueden realizar cosechas diferenciales por calidad, en cuanto al tamaño de grano, con el fin de lograr una adecuada fermentación.

3. Reducción de costos en el manejo de enfermedades, especialmente Monilia, Escoba de Bruja y Fitóptora.

5. Reducción de costos en poda, al hacerla selectiva por materiales. Debido a que existen clones que requieren menos poda que otros. Ejemplo: CCN 51, CAU, comparados con los materiales ICS 95, UF 613, entre otros.

6. Facilita en el futuro la rehabilitación por soca del cultivo o la renovación por injerto del material o surco que resulte indeseable por baja producción o enfermedades.
No se presentan modelos para los diferentes pisos altitudinales, dado que hasta el momento, para el uso de los materiales, su limitación es por el comportamiento sanitario, especialmente a Monilia y Escoba de Bruja y no por la capacidad en la formación y producción de frutos.

Por lo tanto para zonas bajas y húmedas (0 - 400 msnm), se deben preferir los modelos que presenten de baja a mediana incidencia a Monilia y Escoba de Bruja. Para zonas altas, superiores a 800 m, donde estas enfermedades no son limitantes y dado el hecho que la eficiencia productiva de un clon depende del índice de mazorca y de grano, se debe promover la utilización en este piso altitudinal de clones con mayor índice de grano como el EET 8, ICS 1, 6, 39, 60, FSV 41, FLE 2, SCC 61, MON 1, FTA 2 y CAP 34. Para mejorar el intercambio de polen se puede construir modelos con CCN 51 y en esta forma disminuir la utilización de materiales menos competitivos por su índice de grano y mazorca como el ICS 95, IMC 67 y TSH 565.

MODELOS PARA REHABILITACIÓN DE ÁRBOLES DE CACAO CON INJERTACIÓN DOBLE EN CHUPÓN BASAL O TRONCO

Así mismo, en las Figuras 11, 12 y 13, se relacionan los modelos para el caso de intervención de árboles adultos en el proceso de rehabilitación de plantaciones improductivas.

![Diagrama de modelos de injerto doble en tronco o chupón basal](image)

Figura 11. Modelos con injerto doble en tronco o chupón basal para calidad por tamaño de grano y rendimiento.
Figura 12. Modelos con injerto doble en tronco o chupón basal para alto rendimiento.
Figura 13. Modelos con injerto doble a tronco o chupón basal para resistencia a Monilia y Escoba de Bruja.
Modelos de injertación con materiales de alta afinidad, utilizados en procesos de modernización de plantaciones en los departamentos de Arauca y el Meta.
REFERENCIAS BIBLIOGRÁFICAS

BOLETÍN TÉCNICO

REVISIÓN TÉCNICA:
Jacob Rojas Ardila

TIRAJE:
1000 Ejemplares

EDICIÓN:
Fabio Aranzazu Hernández

DISEÑO:
Luis Fernando Rivero S.

IMPRESIÓN:
Litografía La Bastilla Ltda
Bucaramanga

ISBN:
978-958-44-3566-8
Bucaramanga, 2008
UNIÓN TEMPORAL CACAO DE COLOMBIA UNO

ICS 39

TSH 565

ISBN 958443566-8