EVALUACIÓN GENÉTICA DEL COMPORTAMIENTO PRODUCTIVO Y REPRODUCTIVO EN FINCAS DEL SISTEMA DE PRODUCCIÓN DE CARNE DE LA ORINOQUIA COLOMBIANA

1. INTRODUCCIÓN

Aunque el 65% de la población bovina mundial se encuentra en los países tropicales y sólo un 35% en los países desarrollados, ésta última es más eficiente, ya que produce el 10% más de leche y el 4% más de carne.

Uno de los factores que ha incidido en la eficiencia de la producción de los países desarrollados, ha sido, primordialmente, la utilización generalizada entre productores de los registros de las características productivas y reproductivas de sus hatos ganaderos. Ello ha permitido, a su vez, el diseño y puesta en marcha de programas de mejoramiento genético, con el objetivo de seleccionar para la producción y la cría de los mejores animales y los más adaptados a las condiciones de cada país en particular.

En los países tropicales se ha utilizado como herramienta de mejoramiento genético, la implementación de sistemas de cruzamiento entre razas nativas, con razas europeas y otras especies como el Bos indicus, debido a los resultados obtenidos en la F₁, principalmente por el efecto de heterosis. Sin embargo, un componente esencial de programas de mejoramiento animal, como la selección, no ha contado como prioridad o simplemente se ha dejado de lado.

En países tropicales como Brasil, Cuba y Jamaica se han obtenido resultados importantes ya que han hecho énfasis en las dos herramientas del mejoramiento genético: la selección y cruzamiento.

En Colombia en particular, se han desarrollado acciones aisladas, en tiempo y lugar, pero no existen programas sistemáticos de mejoramiento genético, en ninguno de los tres sistemas existentes de bovinos de producción (carne, leche y doble propósito), siendo ésta una de las principales causas de los bajos índices productivos y reproductivos de los bovinos en el país.

Un nuevo esquema de investigación, diseñado y puesto en marcha en Corpoica, desde hace dos años, busca llenar el vacío existente en este tema crucial para el mejoramiento de la eficiencia y productividad de la ganadería. Este esquema, se

1 M.V.Z. Investigador. Grupo Regional Pecuario, Regional 8. Corpoica, La Libertad
2 Zootecnista. MSc. Investigador Adjunto. Recursos Genéticos y Biotecnología Animal, Corpoica, Tibaitatá
3 Zootecnista. PhD., Profesor Asociado, Universidad Nacional de Colombia, Santafé de Bogotá
una en una estrategia de concertación con los productores, donde se identifican los factores que van a ser investigados, se capacitán y se convencen de la importancia de la evaluación genética de los animales en finca, al ser éste, un factor importante para aumentar la eficiencia en la finca. Fruto de este diálogo entre productores e investigadores se formuló y aprobó el Plan de Modernización de la Ganadería Colombiana para Sistemas de Producción Bovina del Trópico Bajo, con una serie de proyectos dentro de los cuales se encuentra el de “Evaluación Genética del Comportamiento Productivo y Reproductivo de los Bovinos”.

La evaluación genética se ha venido desarrollando en cuatro centros de investigación de Corpoica y en 32 fincas pertenecientes a las regiones del Piedemonte Llanero, el Magdalena Medio Sur, el Bajo Magdalena y el Valle del Sinú. El objetivo de este trabajo es presentar los principios básicos del mejoramiento genético y los resultados preliminares relevantes, en cuatro fincas del Magdalena Medio Sur.

1.1. El Mejoramiento Genético como Instrumento de Eficiencia en la Producción Bovina

Para que la producción en cualquier sistema de producción bovina sea eficiente es indispensable la interacción simultánea de una alimentación adecuada, un mejoramiento genético, un manejo y sanidad de alta calidad, principalmente.

Se debe establecer cuál es el papel de cada una de estas áreas en el aumento de la eficiencia de cada empresa ganadera en particular.

El papel del mejoramiento genético es el de elegir especialmente los reproductores de la siguiente generación, de tal forma que los animales seleccionados sean más productivos y estén en mejor condición de utilizar eficientemente los factores e insumos disponibles, respecto de la generación precedente en su medio de producción. Para que el mejoramiento genético pueda cumplir su papel, es necesario implementar un programa adecuado de mejoramiento genético.

1.2. ¿Qué es un Programa de Mejoramiento Genético?

Es el resultado de la combinación de los procesos de selección de los animales y los sistemas por los cuales estos deben ser apareados.

La selección es la elección de los padres que han de producir las futuras generaciones mejoradas.

En forma secuencial, las operaciones que se deben realizar en el proceso de la selección de los animales son las siguientes:
Decidir el método de selección a utilizar

Estimar el valor genético o de mejora, de cada animal candidato a reproducción

Ordenar a los animales por sus valores genéticos

Decidir la intensidad de selección que se va a aplicar

Elegir a los animales para reproducción

Planificar el apareamiento de los animales elegidos

Los sistemas de apareamiento esencialmente son la endogamia y el cruzamiento. Se denomina endogamia al método de apareamiento de individuos parientes, siendo su efecto genético la consanguinidad. El cruzamiento a su vez, es el apareamiento entre animales con un coeficiente de parentesco menor que la media de la población. El efecto genético de este sistema de apareamiento es promover el vigor híbrido o heterosis. Un programa de mejoramiento genético incide y trabaja con la información individual de los animales, y a su vez, con las acciones individuales de todos los ganaderos que constituyen el sistema de producción bovina.

1.3.Pasos para Registrar

La toma de información en las diferentes empresas ganaderas es la piedra angular de cualquier programa de mejoramiento genético. La información que se va a registrar depende del sistema de producción y de las características a ser mejoradas; en términos generales son:

- **Identificación del animal:** Numeración que permite diferenciar un animal de otro.

- **Genealogía:** Hace referencia a la identificación de los padres y abuelos primordialmente, de cada uno de los individuos.

- **Reproductivas:** Registrar las fechas de los partos y los apareamientos.

- **Productivas:** Registrar las fechas y pesos al nacer, destete, sacrificio, y también las fechas de inicio y finalización de cada lactancia, lo mismo que la producción de leche bien sea diaria, semanal, quincenal o mensual.

Toda la información debe ser lo más precisa y fiel posible, además informatizada, depurada y analizada, de modo que mediante evaluaciones, se pueden elegir los animales que serán los futuros padres y diseñar los apareamientos entre los
mejores animales evaluados, evitando consanguinidad, ya que ésta tiende a reducir los índices productivos y reproductivos.

1.4 Entes que Intervienen en el Programa de Mejoramiento Genético

Dentro de un programa de mejoramiento genético intervienen un sinnúmero de aspectos, su número depende de la concertación entre los ganaderos de la región o el país. Los más importantes son:

♦ **Los ganaderos:** Ellos son los más interesados del proceso de evaluación de los animales, al ser los propietarios les afectan los resultados obtenidos con ellos y los efectos económicos de dichos resultados.

♦ **Asociaciones de ganaderos:** Los ganaderos pertenecientes a un determinado sistema de producción se asocian, para buscar el desarrollo de cada sistema en particular.

♦ **Centros de Investigación:** Establecen el proceso de análisis de los datos a través de metodologías adecuadas, para estudiar los diferentes factores ambientales que inciden en las características, estimación de parámetros genéticos, evaluaciones genéticas de los animales, tendencias genéticas de la población y editan el catálogo de los animales para ponerlos a disposición de los ganaderos para su elección.

Aunque el objetivo no es establecer un programa de mejoramiento genético, se debe tener como meta a largo plazo el desarrollo de un programa de mejoramiento genético en los diferentes sistemas de producción bovina del país. En este aspecto, se ha dado un gran avance con la evaluación genética del ganado Cebú Brahman en Colombia realizada por Corpoica con Asocebú en dos años consecutivos 1997 y 1998.

1.5. Etapas de un Programa de Mejoramiento Genético en un Sistema de Producción Bovina

Las informaciones obtenidas de las evaluaciones efectuadas en hatos de cualquier sistema de producción ocurren en etapas distintas. En consecuencia, la utilización para fines de mejoramiento genético puede ser secuencial, de forma que en cada fase del ciclo productivo del rebaño sean escogidos y eliminados animales individuales o grupos de ellos, por medio del empleo de índices que combinan informaciones obtenidas en las diferentes fases.

Dentro de un programa de mejoramiento genético se pueden considerar las siguientes etapas en general:
Etapas de desempeño

Etapas I. En la finca

Los programas de control del desempeño en fincas son importantes, dado que el mejoramiento de los bovinos de una región depende del progreso genético alcanzado en cada unidad de producción.

Etapas II. En centros de prueba

Los animales genéticamente superiores, evidenciados por el desempeño de sus padres y los de cada individuo en particular en fincas, pasan a esta etapa.

Etapas III. Pruebas de progenie

Evaluación de los toros por el desempeño de sus hijos y el uso intensivo de los animales probados en la reproducción, a través de la inseminación artificial.

2. MATERIALES Y MÉTODOS

Los resultados preliminares presentados en este trabajo provienen de dos fincas manejadas bajo el sistema de producción de carne, ubicadas en la Orinoquia Colombiana. En la Tabla 1, se presenta la ubicación de cada una de las fincas, lo mismo que sus características climáticas.

Las dos fincas se dedican al sistema de producción de carne, con base en ganado Cebú-Brahman, utilizando como principal fuente de alimentación, gramíneas en pastoreo rotacional en praderas de Brachiaria decumbens; también en ambas fincas, se les suministra sal mineralizada y agua a voluntad a los animales, durante todo el año.

En las fincas Oeste y Tropicana el servicio reproductivo a las vacas se hace por inseminación artificial y monta natural, en control de dichos apareamientos. La información cedida por cada uno de los productores varió en cantidad y en los diferentes años así: En la finca Oeste, se analizaron a los datos del año 94 al 99, siendo en total 1295 datos, de la finca Tropicana el análisis se efectuó entre los años 92 al 98, con un total de 706 registros.

Estas fincas mantienen sistematizadas las siguientes variables: identificación de los padres de las crías, fecha de nacimiento de las vacas, fecha del parto de cada vaca, peso al nacer, número de la cría, números de partos de la vaca, fecha y peso al destete. Con toda esta información se construyó una base de datos, la cual fue depurada y analizada.

En las dos fincas se analizaron los datos reproductivos y productivos, obteniéndose los parámetros genéticos: heredabilidad, repetibilidad y correlaciones genéticas, fenotípica y ambiental entre el peso al nacer y al destete. Con la estimación de la repetibilidad para los pesos al nacer y al destete y en cada una de las fincas en
particular, se estimó la capacidad más probable de producción de cada vaca, lo mismo que el índice materno productivo, a través de las siguientes fórmulas:

\[
CMPP = Xh + \frac{nr}{1+(n-1)r} (X_1-Xh), \quad IMP = \frac{CMPP \times 365}{IEP}
\]

CMPP = capacidad más probable de producción
IMP = índice materno productivo
IEP = intervalo entre partos
Xh = media del hato para el peso al nacer y/o destete
Xi = media de los pesos de los terneros al nacer y/o destete
n = número de registros de cada vaca
r = repetibilidad del peso al nacer y/o destete

Con base en la información de las fechas y número de los partos y por medio de la fórmula de Wilcox (1957), se estima la eficiencia reproductiva de las vacas.

\[
ER = \frac{365 \times (N-1)}{D}
\]

ER = eficiencia reproductiva
N = número de partos
D = diferencia en días entre el último y el primer parto

Los procedimientos estadísticos utilizados fueron el PROC GLM, PROC VARCOM Y PROC MIXED de SAS (1988). Con base en los componentes de varianza se estimó los valores de los parámetros genéticos: heredabilidad, repetibilidad y las correlaciones genéticas fenotípicas y ambientales, al igual los valores genéticos a través de las diferencias esperadas de progenie (DEP) para los pesos al nacer y/o destete para los toros y vacas.

3. RESULTADOS PRELIMINARES

Desde la realización de la toma de datos de las características productivas y reproductivas hasta que se produce la evaluación de los animales hay una serie de pasos intermedios que van desde la sistematización de los datos recibidos, seguida de un proceso de limpieza o depuración de la información hasta un posterior resumen de los datos, la cual orientará sobre el modelo estadístico a emplear.

En la Tabla 2, se presenta un resumen del porcentaje de los datos utilizados en cada característica analizada con respecto a la cantidad de los datos entregados por cada producto.
En la Tabla 3, se muestra la caracterización de las características productivas y reproductivas de las fincas Oeste y Tropicana, evaluadas genéticamente en la microregión. Tanto los valores de las medias y los desvíos estándar son muy similares en ambas fincas, para las características: pesos al nacer, destete, intervalo entre partos, eficiencia reproductiva e intervalo entre generaciones de las hembras.

Uno de los parámetros genéticos importantes dentro de una población es la heredabilidad, ya que dicho valor indica la correlación entre el fenotipo y el genotipo como también es de fundamental importancia, para la definición de los métodos más adecuados de mejoramiento genético. En la Tabla 4, se presenta el resumen de los estimativos de la heredabilidad para las características de importancia económica en cada una de las fincas analizadas.

Los estimativos de las heredabilidades para las diferentes características de importancia económica, mostraron un rango amplio entre y dentro de características y dentro de finca; así para el peso al destete la heredabilidad fue de 0 en la finca Oeste y de 1.0, para el peso al nacer en la finca Tropicana. Estos dos valores extremos, indicando que cuando es cero no es heredable y que toda la variación depende de factores no genéticos, y cuando es uno, significa que la variación fenotípica solo depende de las variaciones de los genotipos de los individuos.

Cuando la heredabilidad varía de 0 a 0.25, se considera baja; de 0.25 a 0.5 media y encima de 0.5 alta. Cuando ésta es baja, significa que gran parte de la variación es debida a las diferencias ambientales entre los individuos; además cuando la heredabilidad es baja o media, el método es la selección por progenie y/o pedigree. Cuando es alta, significa que es alta la correlación entre el genotipo y el fenotipo y el método indicado es la selección individual.

La repetibilidad indica la correlación entre las producciones de un mismo animal durante su vida productiva. En la Tabla 5, se presenta el resumen de las estimativas de la repetibilidad para las características de importancia económica en cada una de las fincas analizadas.

La repetibilidad para el peso al destete en la finca Tropicana tuvo un valor medio, por estar entre los valores (r = 0.25 a 0.50) y las demás características en las dos fincas mostraron valores bajos (r = 0.0 a 0.25). Con base en estos valores de la repetibilidad para descartar un animal deberá tener más de 3 registros, cuando la repetibilidad es alta (r = 0.5 - 1.0), con base en un solo desempeño del individuo se puede descartar.

Con base en la estimativa de la repetibilidad se obtuvo la capacidad más probable de producción para las características peso al nacer y/o destete, para vaca una de las vacas evaluadas, este valor indica la producción de la vaca en el siguiente parto; y con base a la (CMPP) para cada uno de los parámetros productivos, y con base en el CMPP se estimó el IMP, el cual indica la producción de la vaca por intervalo
entre partos. El IMP sirve para elegir las vacas elites para cada característica en particular.

En la Tabla 6, se muestra el promedio y el desvío estándar para la capacidad más probable (CMPP) y del índice materno productivo (IMP) para los pesos al nacer y destete para las vacas de dos o, más partos de las fincas Oeste y Tropicana.

En la finca Oeste de las 137 vacas clasificadas por el CMPP para el peso al nacer 47% de ellas presentaron un CMPP superior a la media del peso al nacer de 37 kg, indicando que estas vacas en el próximo parto darán un ternero con peso al nacer por encima del promedio. De las 137 vacas clasificadas por IMP el 57% estuvieron con índice superior al promedio de 32 kg./IEP, y solo cuatro, presentaron un intervalo entre partos superior a la media del rebaño de 433 días.

En la finca Tropicana de las 105 vacas clasificadas por el CMPP, el 19% presentaron unos CMPP superior al promedio de peso al nacer de 38 kg; y para el IMP de las 105 clasificadas el 58% de ellas fueron superiores a la media de 32 kg./IEP, y solo una presento un intervalo entre partos, promedio superior a la media del hato de 441 días.

De la finca Oeste de 107 vacas clasificadas por la CMPP para el peso al destete, el 82% de ellas, presentaron un CMPP, promedio superior a la media del rebaño de 235 kg; y de las 107 vacas clasificadas por el IMP para peso al destete, el 53% de ellas presentaron una media superior a 203 kg./IEP, y de ellas solo una presento un intervalo entre partos superior al promedio del hato, el cual fue de 433 días.

En la finca Tropicana de 104 vacas clasificados por la CMPP para el peso al destete el 57% de ellas, presentaron una CMPP superior a la media de 235 kg. del rebaño y de las 104, con una media de 197 kg./IEP, el 56% presentaron una media superior a esta y además solo dos vacas, presentaron un intervalo entre partos superior a la media del hato de 441 días.

Las correlaciones genéticas entre el peso al nacer y peso al destete, en ambas fincas, fueron despreciables, indicando que no existen las probabilidades de que las dos características sean afectadas por los mismos genes. La correlación fenotípica en la finca Oeste fue baja y positiva, en cambio en la Tropicana fue media pero negativa. La correlación fenotípica es simplemente la correlación observada en la población. Esta no da ninguna idea de la magnitud de sus componentes genéticos y ambientales. La correlación ambiental, entre el peso al nacer y al destete, en la finca Oeste fue baja y positiva, pero en la Tropicana fue despreciable. Esta correlación da la idea de los efectos del medio común que pueden afectar a las características.

Las correlaciones fenotípicas y ambientales fueron bajas y positivas entre el peso al nacer y el peso al destete en ambas fincas. La correlación fenotípica es simplemente la correlación observada en la población, esta no nos da ninguna idea de la magnitud de sus componentes genéticos y ambientales. La correlación
observada entre dos características puede ocurrir por causa del medio común entre ellas. Los valores de las correlaciones se presentan en la Tabla 7.

En la Tabla 8 se observa, el promedio, el valor mínimo y máximo de las diferencias esperadas de progenie para los pesos al nacer y destete en las fincas Oeste y Tropicana.

Las diferencias, de promedio, esperadas para peso al nacer con relación al padre y a la madre fueron bajas en ambas fincas; la Tropicana presentó un rango mayor a la de la finca Oeste, lo mismo ocurrió para las diferencias esperadas de progenie, considerando los efectos del padre y madre.

La diferencia esperada de progenie (DEP) es el término usado en bovinos de carne para caracterizar la diferencia esperada en la progenie de un determinado reproductor en relación con la media del rebaño en este caso. Es la predicción futura del desempeño de su progenie con base en las informaciones extraídas de la progenie actual. La DEP, en general se expresa en la misma unidad de la característica que está siendo evaluada, pudiendo ser positiva o negativa. Así por ejemplo, en la finca Tropicana para el peso al destete el toro 666/3 presentó una DEP de +14.9 kg, y toro 230/0 de -11.27. Si los toros 666/3 y 230/0, son apareados al azar, con hembras de su rebaño se espera que en gran número de los descendientes del toro 666/3, serán superiores a los del toro 230/0 en 26.17 kg. o sea: +14.9-(-11.27) = 26.17 kg.

Al establecer la correlación entre el orden obtenido al clasificar los animales por CMPP y la DEP para las características pero al nacer y al destete estas fueron altas y positivas como se presentan en la Tabla 9. Estas indican que es lo mismo evaluar las vacas a través de la CMPP que por la diferencia esperada de progenie (DEP), pero en la práctica es más aconsejable a través de la CMPP, ya que permite estimar el IMP de cada vaca, para poder elegir de esta manera las vacas élite, que serán apareadas con toros de altos valores genéticos y de allí, dar origen a los futuros machos reproductores.

La eficiencia reproductiva puede ser evaluada en las hembras a través del número de servicios por concepción, edad al primer parto, y el intervalo entre partos etc. Algunos investigadores han establecido fórmulas matemáticas con la finalidad de calcular la eficiencia reproductiva de las hembras utilizando los datos producidos por ellas, como el número de partos y las fechas de los partos. Según la fórmula de Wilcox (1957) cuando su valor es igual a 1 indica que la vaca ha dado un parto cada 365 días.

En la Tabla 3, se presenta la eficiencia reproductiva según Wilcox (1957) para las fincas Oeste y Tropicana, siendo éstas de 0.86 y 0.83, en promedio, respectivamente para ambas fincas; esto significa que independiente, del número de partos de cada una de las vacas en la finca Oeste y Tropicana, han producido un ternero cada 424.4 y 439.7 días, respectivamente.
En esta misma tabla, se muestran el intervalo entre generaciones para las hembras de la finca Oeste y Tropicana, siendo de 5.6 y 5.3 años, respectivamente, significando la edad promedio de las vacas al nacer sus hijos; no fue posible estimar este parámetro en los machos debido a que no fue cedida la información de la fecha de nacimiento de ellos.

4 CONCLUSIONES

Un aspecto que se debe mejorar en las fincas involucradas en la evaluación genética es la cantidad, calidad y fiabilidad de los datos productivos y reproductivos, para poder predecir con mayor exactitud los valores genéticos de los animales.

La identificación genética del recurso animal de la finca es una herramienta importante a ser utilizada por los ganaderos para mejorar la eficiencia de sus rebaños.

Las evaluaciones genéticas están orientadas hacia caracteres de interés económico, dado que su objetivo no es otro que el de ser herramientas útiles a la hora de comprar o vender animales y seleccionar la reposición de los que van a ser descartados.
5. REFERENCIAS BIBLIOGRÁFICAS

Tabla 1. Ubicación y Características climáticas de dos fincas evaluadas en la microrregión del Piedemonte de El Meta.

<table>
<thead>
<tr>
<th>Finca</th>
<th>Ubicación</th>
<th>ha</th>
<th>Temperatura</th>
<th>Humedad Relativa</th>
<th>Precipitación</th>
<th>Altura m.s.n.m</th>
<th>Pasturas</th>
<th>Sistema pastoreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oeste</td>
<td>Restrepo</td>
<td>520</td>
<td>27</td>
<td>79</td>
<td>2.787</td>
<td>335</td>
<td>B. decumbens</td>
<td>Rotacional</td>
</tr>
<tr>
<td>Tropicana</td>
<td>Medina</td>
<td>539</td>
<td>27</td>
<td>79</td>
<td>2.787</td>
<td>340</td>
<td>B. decumbens</td>
<td>Rotacional</td>
</tr>
</tbody>
</table>

Tabla 2. Porcentaje de datos utilizados con relación al número total de datos en la microrregión del Piedemonte de El Meta

<table>
<thead>
<tr>
<th>Finca</th>
<th>Peso al nacer</th>
<th>Peso destete</th>
<th>Intervalo</th>
<th>Partos</th>
<th>Eficiencia Reproductiva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. datos</td>
<td>%</td>
<td>No. datos</td>
<td>%</td>
<td>No. datos</td>
</tr>
<tr>
<td>Oeste</td>
<td>713</td>
<td>55</td>
<td>539</td>
<td>42</td>
<td>387</td>
</tr>
<tr>
<td>Tropicana</td>
<td>309</td>
<td>44</td>
<td>306</td>
<td>43</td>
<td>212</td>
</tr>
</tbody>
</table>

Tabla 3. Parámetros descriptivos de características Productivas y Reproductivas de las Fincas Oeste y Tropicana del Piedemonte Llanero

<table>
<thead>
<tr>
<th>Finca</th>
<th>Peso nacer</th>
<th>Peso destete</th>
<th>Intervalo partos</th>
<th>E. Reproductiva</th>
<th>Intervalo entre generaciones hembras</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. datos</td>
<td>Medios</td>
<td>Desv.</td>
<td>No. datos</td>
<td>X</td>
</tr>
<tr>
<td>Oeste</td>
<td>713</td>
<td>37</td>
<td>2.8</td>
<td>539</td>
<td>237</td>
</tr>
<tr>
<td>Tropicana</td>
<td>309</td>
<td>38</td>
<td>1.9</td>
<td>306</td>
<td>235</td>
</tr>
</tbody>
</table>
Tabla 4.
Heredabilidad y desvío standar de las características productivas y reproductivas de las fincas Oeste y Tropicana de la Microrregión del Piedemonte Llanero.

<table>
<thead>
<tr>
<th>Finca</th>
<th>Peso nacer</th>
<th>Peso destete</th>
<th>Intervalo partos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. datos</td>
<td>h²</td>
<td>DE</td>
</tr>
<tr>
<td>Oeste</td>
<td>713</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Tropicana</td>
<td>309</td>
<td>1</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Tabla 5.
Repetibilidad y desvío estándar de las características productivas reproductivas de las Fincas Oeste y Tropicana de la Microrregión del Piedemonte Llanero.

<table>
<thead>
<tr>
<th>Finca</th>
<th>Peso nacer</th>
<th>Peso destete</th>
<th>Intervalo partos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. datos</td>
<td>r</td>
<td>DE</td>
</tr>
<tr>
<td>Oeste</td>
<td>385</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Tropicana</td>
<td>212</td>
<td>0.15</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Tabla 6. Capacidad más probable de producción (CMPP) e índice materno productivo (IMP) promedio y sus desvios estándar de las fincas Oeste y Tropicana

<table>
<thead>
<tr>
<th>Finca</th>
<th>Peso al nacer</th>
<th></th>
<th></th>
<th>Peso al destete</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>CMPP</td>
<td>DS</td>
<td>IMP</td>
<td>DS</td>
<td>N</td>
</tr>
<tr>
<td>Oeste</td>
<td>137</td>
<td>37</td>
<td>0.52</td>
<td>32</td>
<td>49</td>
<td>107</td>
</tr>
<tr>
<td>Tropicana</td>
<td>105</td>
<td>38</td>
<td>0.36</td>
<td>32</td>
<td>6.6</td>
<td>104</td>
</tr>
</tbody>
</table>

Tabla 7. Correlaciones fenotípicas, genéticas y ambientales entre el peso al nacer vs. Peso al destete en las fincas Oeste y Tropicana

<table>
<thead>
<tr>
<th>Finca</th>
<th>CORRELACIONES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fenotípica</td>
<td>Genética</td>
<td>Ambiental</td>
<td></td>
</tr>
<tr>
<td>Oeste</td>
<td>0.28</td>
<td>0</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Tropicana</td>
<td>-0.33</td>
<td>0.04</td>
<td>-0.054</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 8. Valores genéticos (promedio) para los pesos al nacer y destete para padre y madre en las fincas Oeste y Tropicana.

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>Peso al nacer</th>
<th>Peso al destete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Padre</td>
<td>Madre</td>
</tr>
<tr>
<td>O</td>
<td>29</td>
<td>6.9x10-10</td>
</tr>
<tr>
<td>T</td>
<td>21</td>
<td>9.5x10-10</td>
</tr>
</tbody>
</table>

O: Oeste
T: Tropicana

Tabla 9. Correlación entre el orden de clasificación de las hembras según su valor genético y el orden según la CMPP, para los pesos al nacer y al destete, en las fincas Oeste y Tropicana.

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Región</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Oeste</td>
</tr>
<tr>
<td>Tropicana</td>
</tr>
</tbody>
</table>