NUTRICION DE LA CAÑA DE AZUCAR

INTRODUCCION
La fertilización es el conjunto de métodos destinados a aumentar la producción agrícola, facilitando la absorción por las plantas de los elementos nutritivos, que ellas no podrán tomar de la solución del suelo por sus propios medios.
Para determinar las condiciones óptimas de la fertilización es necesario estudiar qué es la planta en sí, cuya vida a través de los elementos constitutivos de los tejidos se manifiesta por un conjunto de funciones de respiración, transpiración, fotosíntesis y nutrición mineral que conducen a la producción de órganos utilizables por el hombre, así como los factores que componen el medio ambiente del cual ella depende; aire, agua, luz, sol y suelo.
Por lo general, el suelo contiene la mayoría de los elementos esenciales en cantidades suficientes para sostener la vegetación natural. Pero cuando se plantan cultivos comerciales llega a ser necesario suministrar a las plantas nutrimentos adicionales cuya cantidad depende de la fertilidad del suelo y de la clase de planta cultivada.
La planta de caña en desarrollo satisfactorio tiene un buen color y muestra un crecimiento normal del tallo y de las hojas. En caso contrario crece muy poco, las hojas cambian de color y frecuentemente muestran síntomas de deficiencia de nutrimentos.

ABSORCION DE NUTRIMIENTOS
La caña de azúcar puede desarrollarse normalmente en muy diversas condiciones de clima y suelo, pero la capacidad de absorción de nutrimentos varía hasta de dos a uno de una variedad a otra. En igualdad de condiciones algunas variedades pueden absorber mayores cantidades de nutrimentos y rendir mejores cosechas. La Tabla 5. muestra la extracción
de nutrimentos por cada tonelada de tallos maduros para las variedades P.O.J. 28-78 y P.O.J. 27-14 (9).

<table>
<thead>
<tr>
<th>Nutrimentos</th>
<th>Tallos g</th>
<th>Residuos g</th>
<th>Total g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variedad P.O.J. 28-78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>400</td>
<td>756</td>
<td>1.166</td>
</tr>
<tr>
<td>Fósforo</td>
<td>480</td>
<td>370</td>
<td>850</td>
</tr>
<tr>
<td>Potasio</td>
<td>1.920</td>
<td>3.475</td>
<td>5.395</td>
</tr>
<tr>
<td>Variedad P.O.J. 27-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>440</td>
<td>772</td>
<td>1.212</td>
</tr>
<tr>
<td>Fósforo</td>
<td>560</td>
<td>402</td>
<td>962</td>
</tr>
<tr>
<td>Potasio</td>
<td>1.730</td>
<td>3.388</td>
<td>5.118</td>
</tr>
</tbody>
</table>

FACTORES QUE INFLUYEN EN LA COMPOSICIÓN DE LA CAÑA

Son de diferente origen y su conocimiento es esencial para precisar a través de la composición química de la caña las necesidades de fertilizantes.

La variedad tiene gran influencia; así los tallos de las variedades de la India (Co. 419; Co. 421 y Co. 290), son más ricos en fósforo, potasio y cenizas y más pobres en nitrógeno que los de las variedades de Java (P.O.J. 28-78; P.O.J. 29-61, etc.).

La composición química del suelo, con la cantidad de nutrimentos asimilables a disposición de la planta, afectan la composición química de la caña. Cuando hay deficiencia de uno o varios nutrimentos, la caña es pobre en esos elementos. Los fertilizantes que se aplican para corregir esas deficiencias modifican la composición química de la caña tanto más cuanto mayor sea la dosis aplicada. Pero cuando un elemento se aplica en exceso modifica la concentración de otros; así cuando el nitrógeno y el potasio se acercan a niveles críticos, la aplicación de uno sólo produce un descenso significativo en la concentración del otro. Por ello es necesario aplicarlos en suficientes cantidades para mantener su concentración en la caña a los niveles óptimos que garanticen su crecimiento continuado.

La variedad, edad, el tipo del suelo, el fertilizante, el suministro de agua, las plagas y enfermedades también influyen notoriamente en la composición química de las plantas de caña de azúcar.
NECESIDADES NUTRITIVAS
La disponibilidad de nutrimentos necesarios para un mejor crecimiento y desarrollo del cultivo de la caña de azúcar depende del mayor o menor contenido de nutrimentos del suelo en que se siembra. Los aumentos en los rendimientos culturales, dependen en gran parte de los requerimientos nutritivos y de la capacidad de los suelos para abastecer de nutrimentos al cultivo, ya que dada las exigencias para producciones cada vez mayores, la disponibilidad de nutrimentos para un cultivo es cada vez menor. En la Tabla 6, se muestra la extracción de nutrimentos en el suelo por la variedad P.O.J. 27-25 (8).

<table>
<thead>
<tr>
<th>Nutrimentos</th>
<th>kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>126 - 165</td>
</tr>
<tr>
<td>Fósforo</td>
<td>78 - 94</td>
</tr>
<tr>
<td>Potasio</td>
<td>233 - 276</td>
</tr>
<tr>
<td>Calcio</td>
<td>173 - 181</td>
</tr>
<tr>
<td>Magnesio</td>
<td>139 - 168</td>
</tr>
</tbody>
</table>

En la Tabla 2, se puede observar la alta absorción de potasio y nitrógeno y la baja absorción de fósforo.

Dutoit (8), calcula que una tonelada de caña de azúcar de molienda extrae 0,50 - 0,55 kg de N; 0,36 - 0,59 kg de P2O5 y 1,0 - 1,36 kg de K2O.

Barnes (2), señala que una cosecha de 50 toneladas extrae del suelo 34 kg de N; 23 kg de P2O5 y 68 kg de K2O. No obstante dichas cantidades pueden variar dentro de amplios límites, según sea la variedad cultivada, el estado nutricivo del suelo y la edad de la caña en el momento de realizarse el corte.

La elevada exigencia de nutrimentos por parte del cultivo de la caña de azúcar, motiva el rápido empobrecimiento del suelo, especialmente cuando éste se explota en forma de monocultivo. En tal caso el requerimiento primordial, para la obtención de cosechas lucrativas, lo presenta un pronto y adecuado tratamiento con fertilizantes.
REQUERIMIENTOS DE LA CAÑA DE AZUCAR

Siendo una de las razones más importantes de la fertilización el conocer las mínimas cantidades de nutrientes que debe tener un suelo para obtener su máxima cosecha, es de gran valor estudiar el papel que juegan los principales elementos en la fisiología de la caña de azúcar y así tenemos:

NITROGENO

Es absorbido por las raíces y llevado a las hojas y zonas de crecimiento donde es combinado con los azúcares para la formación de aminoácidos, que llegan a constituir del 40 al 50 o/o del protoplasma celular. Desde este punto de vista influye de manera determinante en el fenómeno morfológico de crecimiento, es decir, su presencia es importante para obtener tonelajes (6).

Se encuentra en la clorofila; combinado con los carbohidratos forma proteínas y juega un papel importante en la síntesis del protoplasma. Con abundancia de carbohidratos y de compuestos nitrogenados, la caña se desarrolla con rapidez.

De acuerdo con Jacob y Uexküll (8), el nitrógeno es el principal nutriente para la caña de azúcar, y generalmente se encuentra escaso en los suelos con excepción de los suelos orgánicos, que poseen altos contenidos de nitrógeno. Su suministro en dosis adecuadas constituye una condición indispensable para el aumento en los rendimientos. Una abundante fertilización fosfórica y potáctica previene los efectos indeseables ocasionados por una elevada aplicación unilateral de nitrógeno tales como el encamado, el retardo de la madurez de la caña y la baja calidad de los jugos.

El suministro de agua, la duración del ciclo de cultivo, la época de siembra y la fertilidad del suelo son los factores más importantes para determinar la cantidad de nitrógeno que se debe aplicar, y tanto la dosis como la época de aplicación tienen gran influencia en los rendimientos en azúcar. Para la generalidad de las zonas cañeras la fertilización nitrogenada considerada como óptima está comprendida entre 90 a 168 kilogramos de nitrógeno por hectárea. Para cultivos con ciclo vegetativo de 12 meses se deberá aplicar dentro de los primeros cuatro meses, para un ciclo de 18 meses dentro de los primeros seis meses y para cultivos de dos años dentro de los primeros 12 meses (7).

Barnes (2), calculó que 80 toneladas de caña de molienda extraen del suelo 34 kilogramos de nitrógeno aunque esta cantidad puede fluctuar de acuerdo con la variedad cultivada, la fertilidad del suelo y la edad de la caña en la época del corte.

EFECTOS DEL NITROGENO EN LOS AZUCARES El buen uso del nitrógeno consiste en dar a la caña todo el que puede usar para hacer tonelaje durante la época de desarrollo, en forma de que nunca exista
deficiencia, pero solamente hasta el límite de que el porcentaje de nitrógeno en la caña baje lo suficiente durante la época de maduración para que al llegar al corte no contenga un exceso nocivo.

Las altas dosis de nitrógeno producen altos porcentajes de azúcares reductores, pero si éstos no se transforman en sacarosa para la época del corte, la dosis aplicada habría resultado excesiva.

Efecto del Nitrógeno en el Rendimiento

El nitrógeno generalmente aumenta los tonelajes de caña y de azúcar por hectárea. Sin embargo, a medida que se aumenta la dosis de nitrógeno aplicado, los aumentos en caña y azúcar por hectárea y por kilogramo de nitrógeno aplicado, van siendo cada vez menores hasta un punto en que la producción disminuye en vez de aumentar. Al aplicar nitrógeno en exceso o tardíamente el rendimiento es necesariamente bajo cuando el ciclo de desarrollo es muy corto.

La época de aplicación de nitrógeno tiene mucha influencia en la cosecha. Fertilización temprana de dosis adecuadas, promueve mejores condiciones a los tallos primarios hasta el corte y controla el crecimiento de mamoncillos. Aplicaciones tardías de altas dosis bajan la calidad de los jugos y aumentan el número de mamoncillos en cultivo de 18 meses.

Efecto del Nitrógeno en la Plantilla y en la Socia

La eficiencia de la fertilización nitrogenada es siempre baja, es decir, que de las cantidades del abono aplicado, parte lo utiliza la planta y otra parte lo toman prestado los microorganismos del suelo, se nitrifica y se pierde por lixiviación, lo cual indica que se requiere aplicar dosis mayores de nitrógeno de las que la planta realmente asimila. La plantilla, con su vigoroso sistema radicular aprovecha mejor el nitrógeno que la socia. Para un rendimiento óptimo la plantilla necesita menos de un kilogramo de nitrógeno por tonelada de caña producida, en tanto que la socia requiere kilogramo y cuarto de nitrógeno (7).

Época de las Aplicaciones de Nitrógeno

La capacidad de la planta joven de caña para absorber y almacenar nitrógeno durante sus primeras semanas de crecimiento, y utilizarlo en el desarrollo posterior y la facilidad y poco costo de la fertilización en la siembra o en el descarne, fundan la recomendación de que se aplique temprano todo el nitrógeno en cultivos de un año y para cultivos de dos años, la aplicación debe hacerse fraccionada.

Para plantillas con ciclo vegetativo de 14 meses, se aplicará todo el nitrógeno a una edad que no exceda las nueve semanas; complementada con otros nutrientes, producen un aumento en el contenido de sacarosa de los jugos y en los rendimientos (7).

Estudios realizados en Puerto Rico, demuestran que no hay diferencias en los rendimientos al aplicar nitrógeno a cañas de tres a seis semanas de edad; en cambio hubo marcada disminución en las cañas tratadas a las 15 semanas, en comparación con la de tres. Las aplicaciones por encima de las
21 semanas fueron muy perjudiciales en todos los casos con respecto a los rendimientos (12, 13).

FOSFORO

Es un elemento de gran importancia para la vida de la planta y se encuentra presente en todas las zonas de crecimiento, tanto en las raíces como en los meristemas terminales, ya que su presencia es indispensable en el protoplasma celular. En las hojas se encuentra generalmente en forma de fosfatos, donde toma parte activa en la fotosíntesis, siendo indispensable su presencia para que la planta pueda aprovechar la energía resultante de la oxidación de la glucosa. La transformación de azúcares simples a sacarosa, se efectúa bajo la acción catalítica de fósforo (7).

El fósforo es requerido por la caña especialmente durante los primeros meses de su crecimiento (12). El adecuado abastecimiento de tal elemento constituye la base para un buen desarrollo radical y un vigoroso macollamiento (14). En comparación con la demanda de nitrógeno y potasio, la de fósforo es baja. Las aplicaciones promedias fluctúan entre 45 y 112 kilogramos por hectárea de P₂O₅ (8).

Ramos Núñez (9), afirma que el fósforo, además de estimular el desarrollo radical y el macollamiento, acelera los procesos de maduración y es esencial para la polimerización de los almidones. Según el mismo autor, el fósforo, al igual que el nitrógeno, es movilizable de un lugar a otro de la planta y su máxima absorción se obtiene a un pH de 6.5.

El fósforo se encuentra en los tejidos de las plantas como parte de ciertas proteínas y lipoides, pero su forma más común es el estado inorgánico de fosfato. En este caso forma parte activa, no solo en la fotosíntesis de las hojas verdes, sino también en la liberación de la energía encerrada en la glucosa para la respiración en el crecimiento de los meristemos y en el desarrollo del tallo. Así, en las transformaciones de azúcares simples en sacarosa, se requiere que esté presente el fosfato (4, 10).

Catani et al (3), afirman que el fósforo es absorbido en menor cantidad que cualquier otro elemento mayor, que su contenido en la planta decrece temporalmente alrededor de los cuatro meses, para luego experimentar un pequeño incremento.

EFECTO DEL FOSFORO EN LOS RENDIMIENTOS DE AZUCAR

El nivel del fósforo total y más aun el del fósforo disponible para la planta, varía mucho de un suelo a otro. La poca respuesta a la fertilización fosfatada se debe frecuentemente a la inmovilización o fijación del fósforo por el suelo, caso frecuente en muchos suelos de las regiones tropicales.

Sin embargo, cuando hay escasez de fósforo, la caña no puede usar todo el nitrógeno absorbido y se retarda la madurez. Si el nivel de fósforo es suficiente la caña digiere rápidamente el nitrógeno y el potasio y madura más temprano.

EPOCA DE APLICACION

Contrariamente al nitrógeno, el fósforo es
poco soluble y tiene poca movilidad en el perfil, como consecuencia de esto su aplicación puede ser hecha de una vez para toda la vida de la planta (6).

Usando radio-isótopos de fósforo (6), se ha comprobado que este elemento debe ser colocado en la zona donde se desarrollan las raíces, es decir, que el fósforo debe ser colocado en el fondo del surco, debajo de la semilla en el momento de la siembra.

La caña requiere mayores cantidades de fósforo al iniciarse la formación de las raíces y durante el macollamiento, por consiguiente, las aplicaciones de este nutriente deben hacerse en todos los casos al momento de la siembra. Aplicaciones tardías de fósforo al suelo, han dado en varias ocasiones resultados negativos y sin ninguna incidencia en los tonelajes ni en los rendimientos (4, 9).

Cabe anotar que los abonos fosfatados aplicados en la superficie del suelo promueven el crecimiento de las raíces hacia arriba y actúan solamente en climas húmedos donde el suelo superficial se conserva siempre con buenas condiciones de humedad, sobre todo si está cubierto con la paja de la cosecha anterior. En cultivo de riego, donde el suelo está alternativamente húmedo y seco, la planta es incapaz de utilizar los abonos fosfatados en la superficie del suelo. Los fosfatos aplicados con el agua de riego son fijados rápidamente en el suelo superficial (7).

POTASIO

Es indispensable para la mejor producción de la caña de azúcar.

Estimula la asimilación de los hidratos de carbono y la formación de almidones y azúcares. Promueve el desarrollo de las raíces, tallos y hojas y hace menos ostensible los efectos de la sequía, debido a que estimula el transporte del agua y otros elementos dentro de la planta. Tiene habilidad para contrarrestar los efectos de adiciones altas o bajas de nitrógeno y existe una relación tan íntima entre estos dos elementos, que si hay deficiencia de potasio, muy poco o ningún beneficio se consigue con la adición de nitrógeno.

En la estructura de las células aumenta el espesor de las paredes y la turgidez e interviene en el desarrollo normal de las raíces. Obra como catalizador en el metabolismo general de las plantas para la conversión de los carbohidratos en azúcares e interviene en la reducción de los nitratos para la síntesis de proteínas. Es un componente de las enzimas y juega un papel muy importante en los fenómenos de translocación. Un balance correcto de N-K promueve la formación de los tejidos que dan resistencia a la planta y previene el volcamiento (7).

Según Wood el potasio es el elemento que tiene una mayor incidencia en el contenido de los almidones en la caña y en su movilización. Una ligera deficiencia ocasiona sensibles mermas en la formación de los almidones dando como resultado bajos porcentajes de sacarosa.
De acuerdo con Samuels (11), el potasio activa el sistema enzimático de la planta, particularmente la invertasa; fomenta en alto grado la síntesis de la sacarosa, la polarización y la pureza de los jugos.

En suelos aluviales de Sur África se han obtenido extracciones de K20 que fluctúan entre 1,0 y 1,36 kilogramos por una tonelada de caña de molienda (11).

Barnes (2), señala que una cosecha de 50 toneladas extrae del suelo 68 kilogramos de K20.

Humbert, citado por Jacob (8), afirma que una deficiencia potásica conduce a una acumulación de compuestos nitrogenados de bajo peso molecular en las hojas y a un retardo general del crecimiento. Así mismo, las plantas con bajo contenido de potasio foliar, no pueden absorber la cantidad de agua que requieren para su normal crecimiento.

EFFECTOS DEL POTASIO SOBRE EL RENDIMIENTO El potasio aumenta el rendimiento de azúcar por unidad de superficie. Las dosis altas dan utilidades en suelos pobres en potasio, pero en los suelos ricos solamente se obtienen con dosis pequeñas.

Innes y Chiloy, citados por Humbert (7), asientan que la influencia del potasio sobre el aumento en la calidad del jugo de la caña es tanto mayor cuanto mayor es el aumento en los tonelajes de caña; es decir, que la deficiencia de potasio no solamente reduce la producción de caña, sino que también baja la calidad del jugo.

Se cree que la conversión de azúcares reductores a sacarosa antes de la cosecha es cuestión del balance nitrógeno-potasio. Además, se ha demostrado que cuando el nitrógeno y el potasio en la caña se approximan a niveles críticos la aplicación de un solo nutriente ocasiona una caída rápida del otro (7).

EPOCA DE APLICACION Experimentos llevados a cabo por Alvarez y Frere (1), con el fin de determinar cuál es la edad más apropiada para efectuar las aplicaciones de potasio, dejaron establecido que este nutriente es aprovechado por las plantas en un tiempo más amplio que cualquier otro elemento. Estos investigadores obtuvieron tonelajes y rendimientos similares con las siguientes aplicaciones: a) todo el potasio en la época de siembra; b) la mitad del potasio en la siembra y la otra mitad a los dos meses; c) una tercera parte del potasio en la siembra, una tercera parte dos meses más tarde y el resto a los ocho meses de la siembra.

LIxiviacIón DEL POTASIO El cloruro de potasio se lixivia fácilmente en el suelo, el sulfato menos y los fosfatos de potasio son los que ocasionan menores pérdidas. De aquí la importancia de la debida colocación del fertilizante potásico, que debe ser puesto en la zona de máxima concentración de las raíces de la caña para reducir al mínimo las pérdidas por lixiviación.
CALCIO
Es un elemento de estructura, que contribuye a la formación de las paredes de la célula y la lámina intermedia que las une. Las concentraciones tóxicas de magnesio se contrarrestan con aplicaciones de calcio. El yeso (sulfato de cal), se aplica a los suelos alcalinos para contrarrestar los efectos dañinos de las sales de sodio y magnesio (2).
Van Dillemijn citado por Humbert (7), señala que una tonelada de caña extrae del suelo 1,15 kilogramos de calcio, pero estas cantidades varían con el pH y el nivel de calcio en el suelo.
ENCALADO DE LOS SUELOS CAÑEROS El calcio es más bien un mejorador que produce cambios en el suelo y da poca respuesta como nutriente. Los encalados elevan el pH del suelo, reducen la asimilación del hierro, del magnesio y del aluminio, hacen más asimilable el fósforo y el molibdeno y frecuentemente mejoran las condiciones físicas del suelo e impulsan el desarrollo de los microorganismos del suelo.
Los efectos benéficos del encalado en los suelos ácidos han sido siempre reconocidos. En Hawaii, el pH original de 4,9 se elevó a 5,5 con un encalado de 11 toneladas por hectárea, a pH 5,5 con 22 toneladas por hectárea y a pH 6,4 con un encalado de 45 toneladas por hectárea (7).
Los encalados reducen las pérdidas por lixiviación de los fertilizantes potásicos. Suelos con alto contenido de calcio intercambiable tienen mejor retención para el potasio.

MAGNESIO
Forma parte de la molécula de clorofila, así que es fundamental para una adecuada actividad fotosintética. Su deficiencia ocasiona clorosis y un retraso en el crecimiento de la caña (6).
Según Van Dillemijn las cantidades absorbidas por toneladas de caña moledera son: tallos molederos 0,4 kg; puntas 0,2 kg; hojas secas 0,2 kg, lo que equivale a un total de 0,8 kilogramos por tonelada métrica de caña moledera (7).

NUTRICION DE ELEMENTOS MENORES
Aun cuando se usan en pequeñas cantidades, deben estar presentes en el suelo para evitar pérdidas de vigor en el crecimiento, reducción del macollamiento, retardos de la madurez, predisposición a enfermedades, etc. Entre los más importantes se tienen:
AZUFRE El azufre es un constituyente de ciertas proteínas que entran en la formación del protoplasma celular. Los síntomas iniciales de deficiencia son semejantes a los del nitrógeno; las hojas jóvenes toman un color verde amarillento claro, después tanto éstas como las hojas viejas asumen un tinte purpúreo que indica la acumulación de carbohidratos y de antocianina. Las hojas se angostan y no alcanzan su desarrollo completo en longitud, el diámetro del tallo es reducido, su elongación se retrasa y el

123
crecimiento de la caña se reduce.

HIERRO Se encuentra en muy pequeñas cantidades en los tejidos de la caña. Es esencial para la formación de la clorofila. Humbert (7), señala que una tonelada de caña moledera extrae del suelo 0,022 kilogramos de hierro.

Como primer síntoma palidecen las hojas más jóvenes, luego aparecen franjas longitudinales verdes y cloróticas al desaparecer el color verde entre los pequeños haces vasculares. Si la deficiencia continúa desaparece el rayado y adquiere un color amarillo uniforme. Durante estos cambios las hojas viejas retienen su color verde oscuro. En casos agudos las hojas superiores aparecen completamente blancas, las intermedias amarillas y las viejas verde claro. Si no se suministra este nutriente la planta muere (5).

Toxicidad del hierro. Cuando el potasio es deficiente se forman acumulaciones de hierro en los nudos de la caña. Hoffer citado por Evans (5), señala que el incremento de las cantidades de hierro en el nudo de los tallos de la caña de azúcar, puede ser debido a una deficiencia de potasio, pero cuando el hierro disponible en el suelo es muy alto, las acumulaciones de hierro se forman aun cuando haya suficiente potasio.

Van Dillewijn citado por Evans (5), reporta que la condición conocida como enfermedad “Kalimati” en Java es debida a la toxicidad del hierro, aunque esta condición puede ser corregida con aplicaciones de potasio.

MANGANESO El manganeso ayuda a la formación de los tejidos verdes y se requiere en cantidades pequeñas. Tiene particular importancia en el desarrollo de los tejidos meristemáticos y sirve como catalizador en los procesos de oxidación y en la síntesis de las proteínas (7).

Las deficiencias de manganeso ocurren más frecuentemente en el cultivo de la caña de azúcar que las deficiencias de otros micronutrientes. Estas pueden estar asociadas con deficiencias de cobre, zinc y potasio. Se ha conocido como la condición de “Pahala blight” en Hawaii (5). En sus primeros síntomas palidecen los tejidos verdes entre las nervaduras de las hojas, después aparecen franjas longitudinales verde amarillento y pálido que se extienden de media hoja hasta la punta, lo cual la distingue de las franjas de la deficiencia de hierro que abarcan toda la longitud de las hojas. Cuando la deficiencia es severa las franjas son blancas y aparecen zonas de color café rojizo y de tejido muerto.

Cuando se encuentran bajas cantidades de manganeso en el suelo, puede ser corregido aplicando al suelo de 30 a 50 libras de sulfato de manganeso (5).

Humbert (7), reporta que una tonelada de caña moledera extrae del suelo 0,013 kilogramos de manganeso.

BORO Es esencial para el desarrollo normal de los tejidos en crecimiento; la deficiencia de boro es reconocida por la distorsión y pérdida del color de la punta de la caña. Son severamente afectadas las células buliformes que mantienen la turgidez y las hojas exudan agua.
Cuando el boro falta aparecen en las hojas jóvenes manchas aguanosas entre las nervaduras de las hojas que pronto se agradan en áreas deprimidas. Algunas veces se forman agallas en la cara inferior de la hoja. Las hojas jóvenes se angostan, su longitud se reduce, se ponen cloróticas y fuertemente distorsionadas, y en el interior del cogollo, abajo del punto de crecimiento aparecen franjas cafés (5).

— Distribución del boro en varios órganos. Las mayores acumulaciones de boro se presentan en los tejidos meristemáticos. Aunque el boro es un nutriente esencial, sus funciones son desconocidas; pero la más conspicua deficiencia de boro es la avería y muerte de los tejidos vasculares y la desorganización y muerte de los tejidos meristemáticos.

Se sabe que el boro facilita el transporte de los carbohidratos en la planta y posiblemente juega un papel en las funciones de hidratación (5).

Investigaciones realizadas en algunos países han demostrado que no se logra incrementar la producción de caña utilizando varias dosis de boro. Antes por el contrario con dosis altas se ha presentado una baja en los rendimientos (5).

COBRE Es esencial en la composición de las proteínas; su deficiencia causa: poco desarrollo de la cepa de la caña, hojas colgantes, clorosis de franjas definidas e incapacidad del verticilo central para desarrollar las hojas, y es un fuerte limitante en el crecimiento (5).

Se acumula en el punto de crecimiento. Su concentración es mucho mayor en el anillo de crecimiento de los nudos que en la banda de raíces.

ZINC La región meristemática tiene un alto contenido de zinc, que desempeña una función importante en la producción de las sustancias de crecimiento y de las auxinas.

El síntoma más característico es la aparición de líneas blancas a lo largo de las venas mayores de la hoja, en marcado contraste con las bandas cloróticas del hierro y del manganeso que afectan las zonas de la hoja entre las venas. Al aumentar la deficiencia, palidecen las zonas intermedias. En caso agudo las vainas se secan, cesa el desarrollo del punto de crecimiento y los retoños emergen completamente blancos (7).

MOLIBDENO Como todos los micronutrientes desempeña una función múltiple en el metabolismo de la planta y es esencial para la fijación del nitrógeno en las plantas superiores, cuya deficiencia aumenta mucho el nitrógeno no utilizado por la planta.

Los síntomas de deficiencia se manifiestan en la mitad superior de las hojas maduras y en las más viejas por la aparición de un salpicado de rayas amarillas de uno a tres milímetros de ancho y de largo variable. Cuando alcanzan un centímetro o más, las rayas toman un tinte rojizo en el centro y después se secan (7).

BIBLIOGRAFÍA

1. ALVAREZ, R. y E. FREIRE. 1962. Adubacao da cana de azúcar. IV, Fracciamiento da
dose de potasio. Bragantia 21: 31-44.

