EFFECTO DEL NITROGENO, FOSFORO, POTASIO Y
ABONO DE ESTABLO SOBRE LA PRODUCCION DE
CEBOLLA DE BULBO (Allium cepa L.)

Rafael Quintero Durán, Ingeniero
Agrónomo, M.S. Programa de Sue-
los, Regional 7.

Regional 7, Bucaramanga
Agosto, 1981
CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCCION</td>
<td>1</td>
</tr>
<tr>
<td>2. REVISION DE LITERATURA</td>
<td>2</td>
</tr>
<tr>
<td>3. MATERIALES Y METODOS</td>
<td>5</td>
</tr>
<tr>
<td>4. RESULTADOS</td>
<td>9</td>
</tr>
<tr>
<td>4.1. PROPIEDADES FISICO-QUIMICAS DE LOS SUELOS</td>
<td>9</td>
</tr>
<tr>
<td>4.2. EFECTOS DEL ABONO DE ESTABLO</td>
<td>11</td>
</tr>
<tr>
<td>4.3. EFECTOS DEL NITROGENO, FOSFORO Y POTASIO</td>
<td>14</td>
</tr>
<tr>
<td>4.4. CAMBIOS EN EL SUELO</td>
<td>19</td>
</tr>
<tr>
<td>5. DISCUSION</td>
<td>23</td>
</tr>
<tr>
<td>6. CONCLUSIONES</td>
<td>29</td>
</tr>
<tr>
<td>7. RESUMEN</td>
<td>30</td>
</tr>
<tr>
<td>8. SUMMARY</td>
<td>32</td>
</tr>
<tr>
<td>9. BIBLIOGRAFIA</td>
<td>34</td>
</tr>
</tbody>
</table>
EFECTO DEL NITROGENO, FOSFORO, POTASIO Y ABONO DE ESTABLO
SOBRE LA PRODUCCION DE LA CEBOLLA DE BULBO (Allium cepa L.)*

1. INTRODUCCION

El cultivo de la hortaliza cebolla de bulbo o cabezona está considerado como uno de los más importantes para Colombia. Un poco más del 15% del área dedicada a la producción de hortalizas en 1975 correspondió a las cebollas ocañera y cabezona (OPSA, 1978), cuya zona de cultivo corresponde a los municipios de Abrego, La Playa y Ocaña principalmente.

El uso del abono de establo o estiércol de vacunos en la zona antes mencionada es generalizado y en muchas ocasiones excesivo, llegando a aplicaciones superiores a las 150 toneladas por hectárea especialmente cuando se trata de suelos recién incorporados a la producción de este cultivo. Normalmente los productores de cebolla aplican de 100 a 120 toneladas de abono de establo por hectárea cada dos años, con las cuales alcanzan a producir unas cuatro cosechas de...

* Contribución del Programa Nacional de Suelos, División de Agronomía del ICA.
cebolla Ocañera o Bermuda y dos de frijol arbustivo. Se ha observado que la primera cosecha de cebolla lograda después de la aplicación de estas cantidades de abono de establo es de menor rendimiento con relación a las dos o tres siguientes.

Por otra parte, los fertilizantes más utilizados son la Urea y el Nitrón 26, debido a sus precios económicos comparados con los de los fertilizantes compuestos, lo cual puede en cierta forma incidir en el tamaño del bulbo obtenido, factor considerado como importante para determinar la calidad del producto.

Con el presente trabajo se pretendía conocer las principales características de los suelos de la zona cebollera de Ocaña y alrededores, correlacionar estas características con la respuesta de la cebolla cabezona a las aplicaciones de nitrógeno, fósforo, potasio y abono de establo y proporcionar algunas pautas acerca de la fertilización del cultivo.

2. REVISION DE LITERATURA

Los mejores suelos para el cultivo de cebolla son los franco-arenosos con alto contenido de materia orgánica (Higuíta, 1970), que no toleran acidez alta, preferentemente con un pH entre 5.8 y 6.8 (Cásseres, 1966 y Darlington
y Jamaky, 1945).

Las aplicaciones abundantes y regulares de estiércol al suelo pueden tener efectos benéficos sobre su estructura (Russell y Russell, 1960) y las cantidades aplicadas varían entre 20 y 40 toneladas por hectárea, según el contenido de materia orgánica del suelo, (Cásseres, 1966).

La composición del estiércol varía ampliamente, ya que depende de la clase de ganado, la edad, las características particulares de los alimentos que se le suministran (Kornegay, 1976, el régimen de explotación y la naturaleza del suelo que proporciona los forrajes (Aguirre, 1963). Análisis del abono de establo o estiércol de vacunos, con aproximadamente seis meses de almacenamiento y una humedad del 32%, indican contenidos totales de N, P y K de 1.86% y 2.17% respectivamente (Quintero, 1975). Thompson (1952) considera que más o menos la mitad del nitrógeno y el fósforo y el 95% del potasio del estiércol son solubles en agua.

Dado que los nutrientes primarios están contenidos en cantidades muy pequeñas en el estiércol de vacunos, los fertilizantes químicos deberían considerarse como un suplemento. En algunos cultivos su uso es casi imprescindible, ya que el fertilizante suministra fósforo, elemento cuyo contenido es
escaso aún en estiércoles muy bien conservados (FAO, 1963).

Como bien sabemos, la materia orgánica del suelo procede de los residuos de plantas y animales continuamente transformados y del desarrollo de micro-organismos que se nutren de dichos residuos (Primo y Carrasco, 1977). El abono de establo está considerado como la principal fuente de materia orgánica para suelos bien cultivados (Russell y Russell, 1968); su efecto es tan prolongado que contienen más N y C orgánico, parcelas a las cuales se les aplicó abono de establo durante 20 años, entre 1852 y 1871, que las que no recibieron este abono, a pesar de haber transcurrido más de 100 años desde la última aplicación (Jenkinson y Rayner, 1977). Sin embargo, los estiércoles de origen animal no deben aplicarse al suelo con la esperanza de mantener en él un elevado contenido de materia orgánica (FAO, 1963); económicamente no se justificaría. Aplicaciones de abono de establo cercanas a las 20 toneladas por hectárea nantuvieron o elevaron muy ligeramente (3%) el contenido de materia orgánica de un Dystrandept ácuico después de dos cosechas consecutivas de coliflor (Quintero, 1975).

Es de anotar que cuando se suministran residuos de animales o vegetales al suelo, las demandas de nitrógeno de la población microbiana durante la descomposición son de gran importancia práctica. El carbohidrato suplido aumenta dicha pobla-
ción y los micro-organismos utilizan el NH$_4^+$ o el NO$_3^-$ presentes en el suelo (Tisdale y Nelson, 1966), prefiriendo el amonio al nitrato (Stevenson, s.f.). Por lo tanto, si ambos son aplicados al suelo simultáneamente, una alta fracción de amonio puede convertirse en compuestos de nitrógeno orgánico, especialmente si han sido incorporadas sustancias orgánicas con contenidos menores de 1.5% de nitrógeno total (Hauserbuiller, 1972), en cuyo caso, una alta proporción del nitrato aplicado sería tomado por el primer cultivo y la fracción mayor de amonio por los cultivos subsecuentes. (Stevenson, s.f.).

Con relación a la extracción de nutrimentos por parte del cultivo de la cebolla de bulbo, según Laske (1962), una producción de 30 toneladas de cebollas extrae 90,37 y 120 kilogramos de N, P$_2$O$_5$ y K$_2$O por hectárea, respectivamente. De acuerdo con lo anterior, las mayores exigencias corresponden al potasio y al nitrógeno.

3. Materiales y métodos

Las pruebas regionales o experimentos de campo estuvieron localizados en los municipios de Ocaña y La Playa, situados a la altura aproximada de 1.300 metros sobre el nivel del mar, con una temperatura media de 21.7°C y una precipita-
ción anual de 991 m.m. Normalmente ocurren dos períodos de lluvia; el primero entre abril y mayo y el segundo en septiembre, octubre y noviembre.

Se usaron lotes dedicados a la producción del cultivo de la cebolla, abonados con estiércol de bovinos en años anteriores, tal como los productores de cebolla suelen hacer.

La experimentación de campo se inició en 1975 y se finalizó en 1978. Se usó el diseño experimental de Parcelas divididas; las parcelas principales correspondieron a las dosis de abono de establo y las subparcelas a los tratamientos conformados por las dosis de nitrógeno, fósforo y potasio. Cada ensayo constaba de dos repeticiones y se llevó por tres cosechas consecutivas para estudiar efectos residuales del abono de establo.

Las parcelas principales, correspondientes a las dosis de abono de establo, incluyeron un total de 12 subparcelas. El tamaño de las subparcelas fue de 3 metros de largo por 1.20 metros de ancho y de aproximadamente 0.40 metros de alto, dimensiones generalizadas en la región; de esta forma, en cada era se incluían tres suparcelas y cada ensayo constaba de 24 eras.

Se estudiaron 36 tratamientos producto de tres dosis de
abono de establo y 12 combinaciones de N, P$_2$O$_5$ y K$_2$O. La distribución de las dosis de abono de establo en las parcelas principales se hizo al azar, al igual que la distribución de las combinaciones de los tres nutrimentos principales en las subparcelas de cada parcela principal.

Las primeras nueve combinaciones de N, P$_2$O$_5$ y K$_2$O corresponden a un factorial completo formado por tres dosis de N y tres de P$_2$O$_5$ con una dosis constante de potasio, mientras que las tres últimas corresponden a un testigo para N, P$_2$O$_5$ y K$_2$O y dosis de K$_2$O con las centrales de nitrógeno y fósforo.

El abono de establo se mantuvo en descomposición al aire libre cerca de seis meses y dos semanas antes de la primera siembra se aplicó al voleo y se incorporó con azadón, para quedarse finalmente localizado en los primeros 25 cm de profundidad. Para la segunda y tercera siembras no se aplicó abono de establo.

El nitrógeno, fósforo y potasio se aplicaron al voleo antes de cada siembra y se incorporaron al suelo con rastrillo de mano una vez delineadas y desterronadas las eras para sembrar posteriormente. Como fuentes de los tres nutrimentos se usaron: urea (45% de N), superfosfato triple (45% de P$_2$O$_5$) y cloruro de potasio (60% de K$_2$O).
Las variedades de cebolla cabezona usadas en esta experimentación fueron la Ocañera y la Bermuda, esta última de uso generalizado en el municipio de la Playa.

La siembra se hizo en surcos transversales con una distancia de 25 cm. entre ellos y aproximadamente 15 cm. entre plantas usando material vegetativo, o sea bulbos sanos en reposo durante 55 o 60 días.

Al instalar cada experimento se tomaron muestras de suelo, por repetición a dos profundidades, para el análisis de caracterización. Luego, después de cada cosecha, se tomaron nuevas muestras de algunos tratamientos, para observar efectos residuales en el suelo. Los análisis se hicieron en el laboratorio de Suelos del ICA en Palmira de acuerdo con los siguientes métodos: textura, al tacto; pH, usando el electrodó de vidrio (Jackson, 1958) con una relación suelo:agua por volumen de 1:1; materia orgánica, por Walkley y Black (Walkley, 1947); fósforo aprovechable, por Bray 2 (Bray y Kurtz, 1945) y las bases intercambiables se extrajeron usando una solución normal y neutra de acetato de amonio (Jackson, 1958).

Las prácticas culturales como riego, control de malezas, uso de tapa o paja picada sobre las eras, control de plagas o enfermedades se realizaron de acuerdo con el agricultor,
siguiendo las recomendaciones del Programa de Hortalizas del ICA.

Los análisis de varianza se hicieron por cosecha en cada uno de los ensayos realizados, con el objeto de determinar diferencias entre las dosis de abono de establo y los tratamientos de N, P y K utilizados.

Terminada cada cosecha se preparó nuevamente el terreno cuidadosamente y sólo se volvieron a aplicar los tres nutrientes primarios en sus correspondientes subparcelas, con el objeto de observar el efecto residual del abono de establo sobre la producción de cebolla de bulbo y la fertilidad del suelo.

4. RESULTADOS

4.1. PROPIEDADES FÍSICO-QUÍMICAS DE LOS SUELOS.

De acuerdo con los datos presentados en la Tabla 1, los suelos utilizados en esta experimentación era de textura fina, con una acidez que variaba entre mediana y muy ligeramente ácida y contenidos de fósforo aprovechable y potasio intercambiable altos, los cuales, en la mayoría de los casos, fueron más altos en los primeros 20 centímetros de profundidad, al igual que los contenidos de materia orgánica.
TABLA 1. Textura, pH y contenidos de materia orgánica, fósforo y potasio de los suelos utilizados, a dos profundidades.

<table>
<thead>
<tr>
<th>LOCALIDAD</th>
<th>PROFUNDIDAD</th>
<th>TEXTURA</th>
<th>pH</th>
<th>M.O.</th>
<th>P(Bray 2)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
<td>m.e/100g</td>
</tr>
<tr>
<td>Floresta</td>
<td>0-20</td>
<td>ArA</td>
<td>5.6</td>
<td>3.8</td>
<td>63</td>
<td>0.72</td>
</tr>
<tr>
<td>Floresta</td>
<td>20-40</td>
<td>ArA</td>
<td>5.7</td>
<td>3.7</td>
<td>72</td>
<td>0.79</td>
</tr>
<tr>
<td>La Ermita</td>
<td>0-20</td>
<td>ArA</td>
<td>6.2</td>
<td>2.6</td>
<td>332</td>
<td>0.53</td>
</tr>
<tr>
<td>La Ermita</td>
<td>20-40</td>
<td>ArA</td>
<td>6.7</td>
<td>1.3</td>
<td>164</td>
<td>0.20</td>
</tr>
<tr>
<td>La Playa</td>
<td>0-20</td>
<td>ArA</td>
<td>6.8</td>
<td>1.6</td>
<td>73</td>
<td>0.48</td>
</tr>
<tr>
<td>La Playa</td>
<td>20-40</td>
<td>ArA</td>
<td>6.7</td>
<td>0.8</td>
<td>58</td>
<td>0.47</td>
</tr>
</tbody>
</table>
En cuanto al contenido de bases intercambiables, según la Tabla 2, se observa un predominio del calcio con relación a los otros cationes. La relación Ca:Mg fue un poco amplia y con excepción del sodio, los contenidos de los demás cationes disminuyeron al aumentar la profundidad del suelo.

4.2. Efectos del abono de establo

La experimentación en el campo trató de llevarse por tres cosechas consecutivas en cada lote, sin embargo, en la localidad de Floresta, sólo fue posible obtener una cosecha. De acuerdo con los datos presentados en la Tabla 3, en la mayoría de los casos la producción de cebolla correspondiente a la primera cosecha fue inferior a la de la segunda y tercera cosechas. Además se observa en la misma tabla 3, que la más baja producción se obtuvo con las aplicaciones de la dosis superior de abono de establo, o sea 50 toneladas por hectárea. Al compararla a la producción obtenida con 10 y 30 toneladas por hectárea no se justificó económicamente aplicar una dosis mayor de abono de establo en ninguna de las tres cosechas obtenidas en la localidad de la Ermita, ni en la tercera cosecha obtenida en la Playa, sitio en el cual descendió la producción en la última cosecha, debido probablemente al bajo contenido de materia orgánica del suelo y/o factores cli-
TABLA 2. Contenido de bases intercambiables de los suelos utilizados a dos profundidades.

<table>
<thead>
<tr>
<th>LOCALIDAD</th>
<th>PROFUNDIDAD</th>
<th>CALCIO</th>
<th>MAGNESIO</th>
<th>POTASIO</th>
<th>SODIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floresta</td>
<td>0-20</td>
<td>3,80</td>
<td>1,27</td>
<td>0,72</td>
<td>0,06</td>
</tr>
<tr>
<td>Floresta</td>
<td>20-40</td>
<td>3,50</td>
<td>1,27</td>
<td>0,79</td>
<td>0,11</td>
</tr>
<tr>
<td>La Ermita</td>
<td>0-20</td>
<td>8,50</td>
<td>1,93</td>
<td>0,53</td>
<td>0,13</td>
</tr>
<tr>
<td>La Ermita</td>
<td>20-40</td>
<td>6,40</td>
<td>1,00</td>
<td>0,20</td>
<td>0,11</td>
</tr>
<tr>
<td>La Playa</td>
<td>0-20</td>
<td>6,10</td>
<td>1,85</td>
<td>0,48</td>
<td>0,24</td>
</tr>
<tr>
<td>La Playa</td>
<td>20-40</td>
<td>5,00</td>
<td>1,60</td>
<td>0,47</td>
<td>0,15</td>
</tr>
</tbody>
</table>
TABLA 3. Efecto de la aplicación de tres dosis de abono de establo sobre el rendimiento de la cebolla de bulbo en tres zonas.

<table>
<thead>
<tr>
<th>LOCALIDAD</th>
<th>PRODUCCION TOTAL DE BULBOS (Ton/Ha.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Floresta</td>
<td></td>
</tr>
<tr>
<td>1a. cosecha</td>
<td>24,83</td>
</tr>
<tr>
<td>La Ermita</td>
<td></td>
</tr>
<tr>
<td>1a. cosecha</td>
<td>25,83</td>
</tr>
<tr>
<td>2a. cosecha</td>
<td>29,70</td>
</tr>
<tr>
<td>3a. cosecha</td>
<td>39,83</td>
</tr>
<tr>
<td>La Playa</td>
<td></td>
</tr>
<tr>
<td>1a. cosecha</td>
<td>16,31</td>
</tr>
<tr>
<td>2a. cosecha</td>
<td>19,59</td>
</tr>
<tr>
<td>3a. cosecha</td>
<td>17,72</td>
</tr>
</tbody>
</table>

*Dosis de abono de establo en toneladas por hectárea.
máticos correspondientes a la época del año, los cuales pueden influir en la presencia de enfermedades principalmente.

4.3. EFEKTOS DEL NITROGENO, FOSFORO Y POTASIO.

Independientemente de la dosis de abono de establo aplicada por hectárea, en las Tablas 4, 5 y 6 se muestra el efecto de los tratamientos conformados por diferentes dosis de N, P$_2$O$_5$ y K$_2$O, sobre el rendimiento de la cebolla de bulbo.

La Tabla 4 contiene los rendimientos obtenidos en la localidad de la Floresta en la primera cosecha después de la aplicación del abono orgánico.

En la Floresta el efecto de los nutrimentos agregados al suelo fue casi nulo, ya que el tratamiento testigo, abono orgánico sólo, superó en producción a los tratamientos que además de abono de establo contenían por lo menos uno de los nutrimentos ensayados. Para estos, el promedio de producción fue de 24,61 toneladas de cebolla por hectárea, para el testigo 27,72 toneladas, o sea un poco más de 3 toneladas. Por otra parte, se observa que las menores producciones se obtuvieron en ausencia de nitrógeno.

Los rendimientos obtenidos en la localidad de la Ermita, municipio de Ocaña, muestran en promedio un aumento en la producción a partir de la segunda cosecha, después de la aplicac-
TABLA 4. Efecto del nitrógeno, fósforo y potasio sobre el rendimiento de la cebolla Ocañera en la región de la Floresta (Ocaña).

<table>
<thead>
<tr>
<th>N</th>
<th>P_2O_5</th>
<th>K_2O</th>
<th>Producción total de bulbos (Ton/Ha) 1a. cosecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
<td>23,29</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>50</td>
<td>21,42</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>50</td>
<td>22,62</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>26,01</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>26,79</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>24,99</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>50</td>
<td>22,80</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>50</td>
<td>24,58</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>50</td>
<td>23,51</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0</td>
<td>25,26</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>26,32</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27,72</td>
</tr>
</tbody>
</table>

PROMEDIO 24,61
ción de abono orgánico (Tabla 5).

Las mayores producciones se obtuvieron en ausencia de nitrógeno, excepto para la tercera cosecha, en la cual se justificó la aplicación de 100 kilogramos por hectárea. En cuanto al efecto del fósforo, se observaron respuestas en la primera y tercera cosechas, más no en la segunda. En la tercera cosecha se justificaron las aplicaciones de 200 kilogramos de P_2O_5 por hectárea en presencia de 100 y 50 kilogramos de N y K_2O por hectárea, respectivamente. Por su parte, el efecto del potasio no fue muy marcado.

De acuerdo con la Tabla 6, en el municipio de la Playa ocurrió algo similar a lo de la Ermita; la primera cosecha después de la aplicación del abono de establo, produjo menos cantidad de bulbos que las dos siguientes. Esto es general en la zona cebollera de Ocaña y alrededores.

En el municipio de la Playa no se observaron respuestas a las aplicaciones de nitrógeno en ninguna de las tres cosechas; su aplicación disminuyó los rendimientos por hectárea. El fósforo aumentó los rendimientos en la primera cosecha, especialmente cuando no se hicieron adiciones de nitrógeno; sin embargo sería difícil justificar aplicaciones superiores a los 100 kilogramos de P_2O_5 por hectárea.
TABLA 5. Efecto del Nitrógeno, Fósforo y Potasio sobre el rendimiento de la Cebolla Ocañera en la región de La Ermita (Ocaña).

<table>
<thead>
<tr>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>PRODUCCION TOTAL DE BULBOS (Ton/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1a. cosecha</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
<td>24,15</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>50</td>
<td>24,52</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>50</td>
<td>25,82</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>23,27</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>24,05</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>23,97</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>50</td>
<td>25,15</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>50</td>
<td>20,64</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>50</td>
<td>24,16</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0</td>
<td>24,68</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>23,01</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22,92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PROMEDIOS</td>
</tr>
</tbody>
</table>
TABLA 6. Efecto del Nitrógeno, Fósforo y Potasio sobre el rendimiento de la Cebolla Bermuda en el municipio de La Playa.

<table>
<thead>
<tr>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>Producción total de Bulbos (Ton/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1a. cosecha</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
<td>16,45</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>50</td>
<td>18,28</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>50</td>
<td>18,19</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>16,62</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>17,25</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>17,99</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>50</td>
<td>16,18</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>50</td>
<td>17,61</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>50</td>
<td>16,57</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0</td>
<td>17,13</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>16,58</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15,69</td>
</tr>
</tbody>
</table>

PROMEDIOS
17,05 | 18,64 | 17,41
La aplicación de N, P$_2$O$_5$ y K$_2$O no se justificó económicamente en la segunda cosecha; el tratamiento testigo (sólo abono de establo) superó al resto de los tratamientos. En la tercera cosecha, tal como se observa en la Tabla 6, hubo alguna respuesta al fósforo en presencia de N, en las dosis de 100 y 200 kilogramos por hectárea, pero los rendimientos fueron los más bajos, especialmente para la dosis mayor de fósforo.

El efecto del potasio sobre el rendimiento de la cebolla de bulbo en esta última zona fue bastante notorio en la segunda y tercera cosecha después de la aplicación del abono de establo.

Las diferencias encontradas entre las producciones obtenidas con 0 y 100 kilogramos de K$_2$O por hectárea están cerca de las cuatro toneladas, lo cual puede ser suficiente para tener en cuenta este elemento en fertilizaciones de siembras posteriores al abonamiento orgánico.

4.4. CAMBIOS EN EL SUELO.

Los cambios ocurridos en el suelo después de cada una de las cosechas obtenidas en las diferentes localidades se analizaron teniendo en cuenta los contenidos de materia orgánica, fósforo, y potasio, ya que estos parámetros están más relacionados con los elementos o fertilizantes añadidos
al suelo.

Según los datos presentados en la Tabla 7, en la localidad de la Floresta, después de haber obtenido una cosecha de cebolla Ocañera de 24.61 t/ha, en promedio, los mayores porcentajes de materia orgánica del suelo se encontraron con las aplicaciones de 10 y 50 toneladas de abono de establo por hectárea. Los contenidos de fósforo aprovechable aumentaron con las dosis de superfosfato triple aplicadas. Algo similar ocurrió con el potasio, aunque en menor proporción.

De acuerdo con los datos presentados en las Tablas 8 y 1, los contenidos de materia orgánica, fósforo aprovechable y potasio intercambiable del suelo de la localidad de la Ermita, aumentaron con la adición de abono de establo al suelo con relación a sus contenidos iniciales, incluso después de haber obtenido tres cosechas consecutivas de cebolla Ocañera; sin embargo, se observó que estos contenidos disminuyeron después de la tercera cosecha con relación a los contenidos después de la primera y segunda cosechas. Las aplicaciones de 50 kilogramos de K₂O por hectárea elevaron los contenidos de potasio intercambiable del suelo. La tendencia de la materia orgánica del suelo es a aumentar después de la segunda cosecha para disminuir posteriormente, mientras que la tendencia del fósforo y el potasio del suelo es a bajar después de la
TABLA 7. Cambios ocurridos en algunas propiedades químicas de un suelo de La Floresta (Ocaña) después de la 1a. cosecha de cebolla Ocaña.

<table>
<thead>
<tr>
<th>N</th>
<th>$P_{2}O_{5}$ (Kg/Ha)</th>
<th>$K_{2}O$ (T/Ha)</th>
<th>A.E.*</th>
<th>Materia Orgánica %</th>
<th>Fósforo (ppm)</th>
<th>Potasio (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>3,5</td>
<td>113</td>
<td>1,40</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>3,9</td>
<td>89</td>
<td>1,44</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>10</td>
<td>3,9</td>
<td>109</td>
<td>1,74</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>4,2</td>
<td>166</td>
<td>1,60</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>3,3</td>
<td>130</td>
<td>1,46</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>10</td>
<td>3,6</td>
<td>138</td>
<td>1,74</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>3,9</td>
<td>172</td>
<td>1,28</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>30</td>
<td>3,7</td>
<td>181</td>
<td>0,88</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>10</td>
<td>4,3</td>
<td>113</td>
<td>1,76</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>3,9</td>
<td>118</td>
<td>1,32</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>3,6</td>
<td>61</td>
<td>1,18</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4,0</td>
<td>151</td>
<td>1,19</td>
</tr>
</tbody>
</table>

PROMEDIOS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3,8</td>
<td>128</td>
<td>1,42</td>
</tr>
</tbody>
</table>

* A.E. = Abono de Establo.
TABLA 8. Cambios en algunas propiedades químicas de un suelo de la Ermita (Ocaña) después de la 1a., 2a. y 3a. cosecha de ceboila Ocañera.

<table>
<thead>
<tr>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>A.E.*</th>
<th>MATERIA ORGANICA (%)</th>
<th>FOSFORO (ppm.)</th>
<th>POTASIO (me/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kg/Ha.)</td>
<td>(T/</td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>4,0</td>
<td>3,8</td>
<td>3,8</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>3,7</td>
<td>4,5</td>
<td>2,8</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>10</td>
<td>3,4</td>
<td>2,5</td>
<td>3,2</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>3,4</td>
<td>3,4</td>
<td>3,1</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>3,3</td>
<td>3,2</td>
<td>2,8</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>10</td>
<td>3,2</td>
<td>2,8</td>
<td>2,8</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>3,2</td>
<td>3,4</td>
<td>3,0</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>30</td>
<td>3,2</td>
<td>6,1</td>
<td>2,8</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>10</td>
<td>3,9</td>
<td>6,1</td>
<td>3,3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>3,0</td>
<td>3,6</td>
<td>3,4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>50</td>
<td>2,8</td>
<td>6,1</td>
<td>3,1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>50</td>
<td>3,5</td>
<td>4,4</td>
<td>3,2</td>
</tr>
</tbody>
</table>

PROMEDIOS: 3,4 4,2 3,1 787 498 387 1,15 0,95 0,96

*Abono de establo.
primera cosecha. Estas mismas tendencias en lo que a la ma-
teria orgánica, fósforo y potasio del suelo se refiere, se
observaron en el municipio de La Playa (Tabla 9); curiosa-
mente en esta última localidad, el fósforo aprovechable del
suelo disminuyó a partir de la primera cosecha con relación
da su contenido inicial; los demás parámetros aumentaron con
la adición de sólo abono de establo.

En todos los sitios estudiados, el pH del suelo no su-
frió ninguna modificación.

Si se tiene en cuenta la aplicación de abono de establo
sólo, en la tabla 9 se observa que a medida que aumenta la do-
sis aplicada aumentan también los contenidos de materia orgá-
nica, fósforo aprovechable y potasio intercambiable del suelo.
Con respecto a la variable dependiente, rendimiento por hectá
rea, estadísticamente no hubo diferencias significativas entre
dosis de abono de establo aplicado al suelo ni tampoco entre
los diferentes tratamientos de nitrógeno, fósforo y potasio
utilizados en esta experimentación, en ninguna de las tres lo-
calidades.

5. DISCUSION

La alta fertilidad de los suelos de la zona cebollera de
Ocaña y sus alrededores es debida principalmente a las conti-
TABLA 9. Cambios ocurridos en algunas propiedades químicas de un suelo de la Playa después de la 1a., 2a. y 3a. cosecha de cebolla Bermuda.

<table>
<thead>
<tr>
<th>N</th>
<th>N\textsubscript{2}O\textsubscript{5} (Kg/Ha.)</th>
<th>H\textsubscript{2}O (T/Ha.)</th>
<th>A.E.*</th>
<th>MATERIA ORGANICA (%)</th>
<th>FOSFORO (ppm.)</th>
<th>POTASIO (me/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
</tbody>
</table>

*Abono de establo.
nuevas fertilizaciones efectuadas con abono de establo, las cuales generalmente se localizan en los primeros 20 centímetros de profundidad. Esto explica en parte las diferencias de fertilidad existentes entre las capas de 0 a 20 y de 20 a 40 centímetros del suelo, ya que el aumento en el contenido de materia orgánica ha conducido a aumentar el fósforo aprovechable y el potasio intercambiable.

Los rendimientos obtenidos en la cosecha realizada después de la aplicación del abono de establo fueron inferiores a los de las cosechas posteriores, probablemente debido a que este abono orgánico no estaba completamente descompuesto y los microorganismos del suelo competieron con las plantas de cebolla en la toma de nutrientes como nitrógeno y fósforo principalmente.

Por otra parte, el proceso de descomposición de materiales orgánicos que inicialmente eleva la temperatura del suelo afectó la primera cosecha. Este fenómeno ocurrió en los ensayos realizados en la Ermita y La Playa y es común en toda la zona.

Las aplicaciones de abono de establo superiores a 10 toneladas por hectárea no se justificaron estadísticamente para ninguna de las tres localidades. Económicamente pue-
den aceptarse las dosis de 10 y 30 toneladas/Ha como límites promisorios en esta zona cebollera, y recomendarse como base para nuevas investigaciones cuyo objetivo sea precisar las recomendaciones para el productor de cebolla Ocañera y Bermuda. Los resultados obtenidos por Higuita (1970) en la Sabana de Bogotá concuerdan con estos límites.

Los efectos del nitrógeno, fósforo y potasio sobre el rendimiento de la cebolla Ocañera y Bermuda no fueron muy notorios debido al mismo grado de fertilidad de los suelos. En muchos casos el nitrógeno ocasionó descensos en la producción relacionados con buen desarrollo de la parte aérea de las plantas pero poco desarrollo de los bulbos, lo mismo que con disminuciones del número de plantas por parcela, lo cual fue observado especialmente cuando se usó la dosis de 200 kilogramos de N/Ha. Por otra parte, se justificó la aplicación de fósforo principalmente para la primera cosecha después de aplicar abono orgánico, lo cual confirmaría que los microorganismos utilizan el fósforo aprovechable compitiendo con las plantas. El efecto del fósforo fue más notorio en presencia de nitrógeno, es decir, en cierta forma contrarrestó algunos efectos indeseables, relacionados con el tamaño de los bulbos de cebolla. Aunque para este artículo no se ha tenido en cuenta el tamaño promedio de los bulbos, es importante anotar que el fósforo aumentó la producción de cebolla de tamaño co-
mercional o sea bulbos con un peso superior a los 25 gramos. El potasio, prácticamente se mantuvo constante durante esta investigación, sin embargo, los tratamientos adicionales permitieron determinar una respuesta en un 60% de los casos. Probablemente para futuras investigaciones en cebolla Ocañera y Bermuda en la zona de Ocaña y alrededores se justificaría estudiar más ampliamente el efecto del potasio que del nitrógeno. Similarmente a lo encontrado por Kornegay (1976) y Jenkinson y Rayner (1977) las aplicaciones de estiércol incrementaron los contenidos de materia orgánica, fósforo y potasio del suelo, pero lo importante no es aumentar estos contenidos, sino mantener el estado de fertilidad en ciertos límites para no hacer de la aplicación de abono orgánico una práctica costosa y antieconómica al pretender por ejemplo, superar ciertos puntos de equilibrio en lo que al contenido se refiere, mediante altas aplicaciones de estiércol de vacunos cada dos o más años, tal como ocurre en la región cebollera de Ocaña y alrededores.

Cuando los ensayos se llevaron por tres cosechas, el contenido de materia orgánica del suelo disminuyó después de la segunda cosecha lo cual indicaría el grado de pérdida de la materia orgánica, lógicamente, al aumentar su ra-
ta de descomposición. Por lo tanto, si se efectúan aplicaciones exageradas de abono de establo al suelo, las pérdidas de materia orgánica también serán exageradas y terminarán comportándose en sus efectos residuales al igual que dosis mucho menores, con la diferencia de que las dosis menores no competirán tanto con el cultivo en la toma de elementos como el nitrógeno y el fósforo y obviamente son más económicas.

Las disminuciones del fósforo aprovechable y potasio intercambiable del suelo después de la segunda y tercera cosecha de cebolla Ocaña y Bermuda pueden estar relacionados con la pérdida de materia orgánica y con la extracción de nutrientes realizada por el cultivo. Sin embargo, después de la segunda cosecha estos contenidos guardan cierto equilibrio lo que puede sugerir la necesidad de reforzar las aplicaciones razonables de abono de establo, con 10 t/Ha o un poco más de superfosfato triple y cloruro de potasio, dado el corto período vegetativo del cultivo de la cebolla de bulbo en esta zona, el cual es de 2 a \(2\frac{1}{2}\) meses.

Indudablemente el uso de dosis entre 10 y 30 toneladas de abono de establo por hectárea para el cultivo de la cebolla en la zona de Ocaña y alrededores trae consigo una disminución apreciable en los costos de producción, ya que en la actualidad es difícil encontrar productores de cebolla que
usen menos de 70 toneladas de abono de establo por hectárea. Por otra parte, el uso de los abonos nitrogenados está generalizado y de acuerdo con estos experimentos realizados en el campo, la aplicación del nitrógeno es menos justificada que la de fósforo y potasio.

En forma global se puede calcular un ahorro cercano a 100 millones de pesos en abono orgánico con estas nuevas dosis para esta zona de aproximadamente 1.500 hectáreas dedicadas a la producción de cebolla, si se supone una disminución media de 60 toneladas por hectárea y un precio de $1.200.00 tonelada de abono de establo puesta en la finca.

6. CONCLUSIONES

De acuerdo con los resultados obtenidos puede deducirse:

1. Las continuas aplicaciones de abono de establo a los suelos de la zona cebollera de Ocaña y alrededores han mejorado considerablemente su fertilidad.

2. Las aplicaciones de abono de establo superiores a las 30 toneladas por hectárea para la cebolla de bulbo, variedades Ocañera y Bermuda, no se justifican económicamente.

3. Estadísticamente no se justifica hacer aplicaciones superiores a las 10 toneladas de abono de establo para la ce-
bolla Ocañera y Bermuda en la zona de Ocaña y alrededores.

4. De los tres elementos esenciales primarios, el nitrógeno fue el que menos justificó su aplicación, al usarlo en dosis de 0, 100 y 200 kilogramos por hectárea en cada siembra de cebolla.

5. Dado el corto período vegetativo del cultivo, se recomienda aplicar P_2O_5 y K_2O en dosis de 100 y 50 kilogramos por hectárea, respectivamente. La fuente fosfatada debe ser bastante soluble en agua para que el fósforo sea suficientemente aprovechado en cada cosecha.

7. RESUMEN

Los costos de producción de cebolla Ocañera y Bermuda en la región de Ocaña (Norte de Santander) y sus alrededores se han incrementado en forma considerable en los últimos años. El abono de establo es de uso generalizado y exagerado; las aplicaciones superan fácilmente las 100 toneladas por hectárea para tres o cuatro cosechas de cebolla de bulbo.

En tres regiones de esta zona cebollera se realizaron siete cosechas en tres experimentos de fertilización en cebolla de bulbo, con el objeto de determinar las dosis de abono de establo, nitrógeno, fósforo y potasio a recomendar y los posi...
bles efectos residuales del abono de establo sobre la producción de cebolla y las propiedades químicas del suelo.

La aplicación de abono de establo aumentó los contenidos de materia orgánica, fósforo aprovechable y potasio intercambiable del suelo. Por su parte, el pH del suelo permaneció casi invariable.

En muchos casos, la aplicación del nitrógeno redujo los rendimientos, especialmente en la dosis de 200 kg/ha; las dosis de fósforo y potasio de 100 y 50 kilogramos de P₂O₅ y K₂O por hectárea, respectivamente, pueden considerarse como promisorias. El fósforo influyó positivamente en la obtención de cebolla de tipo comercial o de mayor tamaño.

Las dosis de abono de establo (estiércol de vacunos) que se recomiendan para los suelos de la zona de Ocaña y alrededores y para las variedades de cebolla Ocañera y Bermuda varían entre 10 y 30 toneladas por hectárea. Los suelos recién incorporados a la producción de cebolla son los más exigentes en cuanto al abono de establo.

Al considerar el área mínima de 1.500 hectáreas, dedicadas a la producción de cebolla de bulbo en esta zona del Norte de Santander, con las nuevas dosis recomendadas de abono de establo se ahorrarían cerca de 60.000 toneladas de éste,
cuyo valor puede estar cerca de los 100 millones de pesos.

8. SUMMARY

The production costs of "Ocañera and Bermuda" bulb onion in Ocañá region (Department of Norte de Santander) and surrounding areas have increased greatly in last years. Cattle manure is applied generally and extravagantly. The applications usually exceed of 100 ton/ha for each three or four bulb onion crops.

Seven crops were realized in three different regions of this onion zone for three experiments on bulb onion fertilization in order to determine the doses of cattle manure, nitrogen, phosphorus and potassium to be recommended as well as the possible residual effects of cattle manure on onion production and soil chemical properties.

The cattle manure application increased the organic matter, the phosphorus and the exchangeable potassium content in the soil. However pH in the soil kept its initial value.

In many cases, the application of nitrogen reduced the yields especially with doses of 200 kg/Ha. Phosphorus and potassium doses of 100 and 50 kg respectively may be considered promisories. Phosphorus influenced positively in the obtention of onions of larger size.
The cattle manure dose recommended to Ocaña and surrounding zones ranges between 10 and 30 ton/ha. The soils recently incorporated to the bulb onion production need a bigger quantity of cattle manure.

By using the new dose of cattle manure in a minimum area of 1.500 ha of the bulb onion zone of Norte de Santander, there would be a saving of 60.000 ton of this manure which may be estimated in 100.000.000 pesos.
9. BIBLIOGRAFÍA

Publicación del ICA

Código: 07-2.2-084-81

Impresión: División de Comunicación
Centro Nacional de Investigación,
Tibaitata.
Apartado Aéreo: 151123, Bogotá

Edición: Norma Corales de Arango

Ejemplares: 500